OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 3 — Mar. 1, 2013
  • pp: 329–338

Free-surface photopolymerizable recording material for volume holography

Tina Sabel, Susanna Orlic, Karl Pfeiffer, Ute Ostrzinski, and Gabi Grützner  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 3, pp. 329-338 (2013)
http://dx.doi.org/10.1364/OME.3.000329


View Full Text Article

Enhanced HTML    Acrobat PDF (1235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new organic photosensitive material for volume holographic recording. Advanced material composition and sample preparation eliminates the need for a protective layer and allows layer fabrication with variable thickness and a free surface. Optimized chemical formulation results in a high energetic sensitivity, high angular selectivity and high inducible refractive index contrast. We investigate the photoresponse and nonsinusoidal refractive index profiles. We demonstrate highly resolved optical structuring with up to 8000 lines per mm. Imaging of the holographic phase gratings is accomplished by optical microscopy.

© 2013 OSA

OCIS Codes
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.5470) Materials : Polymers
(050.5298) Diffraction and gratings : Photonic crystals
(160.5335) Materials : Photosensitive materials

ToC Category:
Optical Storage Media

History
Original Manuscript: November 1, 2012
Revised Manuscript: December 3, 2012
Manuscript Accepted: December 3, 2012
Published: February 1, 2013

Citation
Tina Sabel, Susanna Orlic, Karl Pfeiffer, Ute Ostrzinski, and Gabi Grützner, "Free-surface photopolymerizable recording material for volume holography," Opt. Mater. Express 3, 329-338 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-3-329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  2. S. Orlic, C. Müller, and A. Schlösser, “All optical fabrication of three-dimensional photonic crystals in photopolymers by multiplex-exposure holographic recording,” Appl. Phys. Lett.99(13), 131105 (2011). [CrossRef]
  3. S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Müller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt.11(2), 024014 (2009). [CrossRef]
  4. A. V. Lukin, “Holographic optical elements,” J. Opt. Technol.74(1), 65–70 (2007). [CrossRef]
  5. T. Kim, S. Chung, S. Han, and B. Lee, “Photopolymer-based demultiplexers with superposed holographic gratings,” IEEE Photon. Technol. Lett.17(3), 618–620 (2005). [CrossRef]
  6. R. T. Ingwall and D. A. Waldman, “Holographic filter with a wide angular field of view and a narrow spectral bandwidth,” U.S. patent 7,480,084-B2 (20 January 2009).
  7. M. Květoň, V. Ledl, A. Havranek, and P. Fiala, “Photopolymer for optical holography and holographic interferometry,” Macromol. Symp.295(1), 107–113 (2010). [CrossRef]
  8. H. Sieber, H.-J. Boehm, U. Hollenbach, J. Mohr, U. Ostrzinski, K. Pfeiffer, M. Szczurowski, and W. Urbanczyk, “Low-loss single mode waveguides in polymer,” Proc. SPIE8431, 84311R, 84311R-10 (2012). [CrossRef]
  9. L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A, Pure Appl. Opt.11(2), 024011 (2009). [CrossRef]
  10. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1(2), 207–222 (2011). [CrossRef]
  11. T. N. Smirnova, L. M. Kokhtych, A. S. Kutsenko, O. V. Sakhno, and J. Stumpe, “The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure,” Nanotechnology20(40), 405301 (2009). [CrossRef] [PubMed]
  12. L. de Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter7(8), 3739–3743 (2011). [CrossRef]
  13. A. Erdmann, T. Fühner, F. Shao, and P. Evanschitzky, “Lithography simulation: modeling techniques and selected applications,” Proc. SPIE7390, 739002, 739002-17 (2009). [CrossRef]
  14. R. A. Singh, N. Satyanarayana, T. S. Kustandi, and S. K. Sinha, “Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices,” J. Phys. D Appl. Phys.44(1), 015301 (2011). [CrossRef]
  15. V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner, and J. Brugger, “Direct writing laser of high aspect ratio epoxy microstructures,” J. Micromech. Microeng.21(1), 017003 (2011). [CrossRef]
  16. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys.81(9), 5913–5923 (1997). [CrossRef]
  17. D. A. Waldmann, R. T. Ingwall, P. K. Dahl, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE2689, 127–141 (1996). [CrossRef]
  18. K. Yu, K. S. Yin, and J. E. Wreede, “Multiple layer holograms,” U.S. patent 5,282,066 (25 January 1994).
  19. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt.50(17), 2594–2600 (2011). [CrossRef] [PubMed]
  20. C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun.224(1-3), 27–34 (2003). [CrossRef]
  21. G. J. Steckman and F. Havermeyer, “High spatial resolution measurement of volume holographic gratings,” Proc. SPIE6136, 613602, 613602-9 (2006). [CrossRef]
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  23. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt.44(16), 3197–3207 (2005). [CrossRef] [PubMed]
  24. Y.-C. Jeong, S. Lee, and J.-K. Park, “Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express15(4), 1497–1504 (2007). [CrossRef] [PubMed]
  25. Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim, and Y. Kawakami, “High-performance transmission holographic gratings via different polymerization rates of dipentaerythritol acrylates and siloxane-containing epoxides,” Chem. Mater.17(25), 6263–6271 (2005). [CrossRef]
  26. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003). [CrossRef] [PubMed]
  27. S. F. Su and T. K. Gaylord, “Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape,” J. Opt. Soc. Am.65(1), 59–64 (1975). [CrossRef]
  28. M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express19(23), 22423–22436 (2011). [CrossRef] [PubMed]
  29. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Deerfield Beach Fla.)10(15), 1219–1224 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited