OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 3 — Mar. 1, 2013
  • pp: 390–399

Silver migration at the surface of ion-exchange waveguides: a plasmonic template

Patrícia Loren Inácio, Bruno J. Barreto, Flavio Horowitz, Ricardo R. B. Correia, and Marcelo B. Pereira  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 3, pp. 390-399 (2013)
http://dx.doi.org/10.1364/OME.3.000390


View Full Text Article

Enhanced HTML    Acrobat PDF (2192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The formation and evolution of metallic-silver nanoparticles capped with silver oxide, in the surface of Ag-doped waveguides produced by ion-exchange, were characterized. The samples were exposed to air atmosphere for periods lasting until 35 days and their aging process was investigated by optical and Atomic Force Microscopy (AFM) measurements. The results evidence migration of the Ag+ cations from inside the glass to the surface at room temperature, followed by aggregation of the silver nanoparticles (NPs) and oxidation, creating a nanometric-thick layer over the waveguide surface. This layer was employed for surface-enhanced Raman scattering (SERS) signal and for the fabrication of holographic diffraction gratings (HDG), which are presented as application examples of this material as a new plasmonic template.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.4670) Materials : Optical materials

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: October 31, 2012
Revised Manuscript: December 26, 2012
Manuscript Accepted: December 27, 2012
Published: February 7, 2013

Citation
Patrícia Loren Inácio, Bruno J. Barreto, Flavio Horowitz, Ricardo R. B. Correia, and Marcelo B. Pereira, "Silver migration at the surface of ion-exchange waveguides: a plasmonic template," Opt. Mater. Express 3, 390-399 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-3-390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. C. Righini and S. Pelli, “Ion exchange in glass: a mature technology for photonic devices,” Proc. SPIE4453, 93–99 (2001). [CrossRef]
  2. T. Izawa and H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett.21(12), 584–586 (1972). [CrossRef]
  3. T. G. Giallorenzi, E. J. West, R. Kirk, R. Ginther, and R. A. Andrews, “Optical waveguides formed by thermal migration of ions in glass,” Appl. Opt.12(6), 1240–1245 (1973). [CrossRef] [PubMed]
  4. S. Pelli, M. Bettinelli, M. Brenci, R. Calzolai, A. Chiasera, M. Ferrari, G. Nunzi Conti, A. Speghini, L. Zampedri, J. Zheng, and G. C. Righini, “Erbium doped silicate glasses for integrated optical amplifiers and lasers,” J. Non-Cryst. Solids345-346, 372–376 (2004). [CrossRef]
  5. C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B Chem.69(1-2), 85–95 (2000). [CrossRef]
  6. R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988). [CrossRef]
  7. O. Véron, J. P. Blondeau, N. Abdelkrim, and E. Ntsoenzok, “Luminescence study of silver nanoparticles obtained by annealed ionic exchange silicate glasses,” Plasmonics5(2), 213–219 (2010). [CrossRef]
  8. J. P. H. Blondeau, O. Veron, F. Catan, O. Kaitasov, N. Sbai, and C. Andreazza-Vignolle, “Clustering of silver nanoclusters embedded in soda lime glasses using ionic exchange and helium ion bombardment,” Plasmonics4(4), 245–252 (2009). [CrossRef]
  9. A. Tervonen and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng.50, 1–15 (2011).
  10. E. Borsella, G. De Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, A. Quaranta, and A. Miotello, “Silver cluster formation in ion-exchanged waveguides: processing technique and phenomenological model,” J. Non-Cryst. Solids253(1-3), 261–267 (1999). [CrossRef]
  11. P. Gangopadhyay, P. Magudapathy, R. Kesavamoorthy, B. K. Panigrahi, K. G. M. Nair, and P. V. Satyam, “Growth of silver nanoclusters embedded in soda glass matrix,” Chem. Phys. Lett.388(4-6), 416–421 (2004). [CrossRef]
  12. Z. Y. Chen, D. Liang, G. Ma, G. S. Frankel, H. C. Allen, and R. G. Kelly, “Influence of UV irradiation and ozone on atmospheric corrosion of bare silver,” Corros. Eng., Sci. Tech.45(2), 169–180 (2010). [CrossRef]
  13. R. Kötz and E. Yeager, “Raman studies of the silver/ silver oxide electrode,” J. Electroanal. Chem.111(1), 105–110 (1980). [CrossRef]
  14. Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application,” Opt. Mater. Express1(2), 164–172 (2011). [CrossRef]
  15. H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films333(1-2), 82–87 (1998). [CrossRef]
  16. Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012). [CrossRef] [PubMed]
  17. G. J. Lee, Y. P. Lee, S. G. Jung, C. K. Hwangbo, S. S. Kim, H. Cheong, and C. S. Yoon, “Photo-structuring of silver-oxide films by using femtosecond laser pulses,” J. Korean Phys. Soc.53(3), 1414–1418 (2008). [CrossRef]
  18. D. Lawless, S. Kapoor, P. Kennepohl, D. Meisel, and N. Serpone, “Reduction and aggregation of silver ions at the surface of colloidal silica,” J. Phys. Chem.98(38), 9619–9625 (1994). [CrossRef]
  19. M. F. Al-Kuhaili, “Characterization of thin films produced by the thermal evaporation of silver oxide,” J. Phys. D Appl. Phys.40(9), 2847–2853 (2007). [CrossRef]
  20. A. J. Varkey and A. F. Fort, “Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition,” Sol. Energy Mater. Sol. Cells29(3), 253–259 (1993). [CrossRef]
  21. R. H. Muller, “Definitions and conventions in ellipsometry,” Surf. Sci.16, 14–33 (1969). [CrossRef]
  22. J. E. Broquin, “Ion exchanged integrated devices,” Proc. SPIE4277, 105–117 (2001). [CrossRef]
  23. F. Horowitz, M. B. Pereira, S. Pelli, and G. C. Righini, “Towards a more accurate refractive index profile of ion-exchanged waveguides,” Thin Solid Films460(1-2), 206–210 (2004). [CrossRef]
  24. X. Y. Gao, S. Y. Wang, J. Li, Y. X. Zheng, R. J. Zhang, P. Zhou, Y. M. Yang, and L. Y. Chen, “Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods,” Thin Solid Films455–456, 438–442 (2004). [CrossRef]
  25. M. A. García, M. García-Heras, E. Cano, J. M. Bastidas, M. A. Villegas, E. Montero, J. Llopis, C. Sada, G. De Marchi, G. Battaglin, and P. Mazzoldi, “Photoluminescence of silver in glassy matrices,” J. Appl. Phys.96(7), 3737–3740 (2004). [CrossRef]
  26. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  27. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  28. A. Simo, V. Joseph, R. Fenger, J. Kneipp, and K. Rademann, “Long-term stable silver subsurface ion-exchanged glasses for SERS applications,” ChemPhysChem12(9), 1683–1688 (2011). [CrossRef] [PubMed]
  29. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science291(5501), 103–106 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited