OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 3 — Mar. 1, 2013
  • pp: 407–417

Fabrication of multifunctional SnO2 and SiO2-SnO2 inverse opal structures with prominent photonic band gap properties

Sriram Guddala, K. Shadak Alee, and D. Narayana Rao  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 3, pp. 407-417 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present here a simple two step infiltration and calcination involved technique to obtain high optical quality inverse opal structures of SiO2, SnO2 and SiO2-SnO2 binary oxide inverse opal structures. Scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction measurements are carried out to investigate the structural features of the opals. High resolution TEM measurements reveal the uniform distribution of SnO2 nanocrystals throughout the inverse opal matrix. Optical properties along with theoretical fitting reveal the interesting photonic band gap features of the opals with high optical quality as well as the high porosity of these structures. The well-known multifunctional properties of SnO2 like photorefractivity, low phonon energy for luminescent materials and gas sensing features show the advantages of these inverse opal structures can be favorable in the development of photonics and sensors.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.4670) Materials : Optical materials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: January 2, 2013
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 8, 2013
Published: February 12, 2013

Sriram Guddala, K. Shadak Alee, and D. Narayana Rao, "Fabrication of multifunctional SnO2 and SiO2-SnO2 inverse opal structures with prominent photonic band gap properties," Opt. Mater. Express 3, 407-417 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  4. C. López, “Materials aspects of photonic crystals,” Adv. Mater.15(20), 1679–1704 (2003). [CrossRef]
  5. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008). [CrossRef]
  6. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011). [CrossRef]
  7. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, “All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect,” Opt. Lett.30(17), 2254–2256 (2005). [CrossRef] [PubMed]
  8. S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” J. Am. Chem. Soc.125(11), 3322–3329 (2003). [CrossRef] [PubMed]
  9. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  10. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett.84(26), 5434–5436 (2004). [CrossRef]
  11. G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kolle, H. Lehr, M. Schmidt, M. M. Sigalas, C. M. Soukoulis, G. Kiriakidis, T. Pedersen, J. Kuhl, and W. Koenig, “Fabrication of photonic crystals by deep x-ray lithography,” Appl. Phys. Lett.71(11), 1441–1443 (1997). [CrossRef]
  12. S. Guddala, S. A. Kamanoor, A. Chiappini, M. Ferrari, and D. Narayana Rao, “Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals,” J. Appl. Phys.112(8), 084303 (2012). [CrossRef]
  13. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990). [CrossRef] [PubMed]
  14. E. Graugnard, V. Chawla, D. Lorang, and C. J. Summers, “High filling fraction gallium phosphide inverse opals by atomic layer deposition,” Appl. Phys. Lett.89(21), 211102 (2006). [CrossRef]
  15. S. John, A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000). [CrossRef] [PubMed]
  16. J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater.23(1), 30–69 (2011). [CrossRef] [PubMed]
  17. F. Meseguer, A. Blanco, H. Míguez, F. García-Santamaría, M. Ibisate, and C. López, “Synthesis of inverse opals,” Colloids Surf. A Physicochem. Eng. Asp.202(2-3), 281–290 (2002). [CrossRef]
  18. Y. A. Vlasov, N. Yao, and D. J. Norris, “Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots,” Adv. Mater.11(2), 165–169 (1999). [CrossRef]
  19. J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem.18(9), 981–988 (2008). [CrossRef]
  20. D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009). [CrossRef]
  21. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007). [CrossRef]
  22. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir24(21), 12150–12157 (2008). [CrossRef] [PubMed]
  23. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012). [CrossRef]
  24. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J.3(3), 489–499 (2011). [CrossRef]
  25. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17(16), 13747–13757 (2009). [CrossRef] [PubMed]
  26. K. Shadak Alee, G. Sriram, and D. Narayana Rao, “Spectral and morphological changes of 3D polystyrene photonic crystals with the incorporation of alcohols,” Opt. Mater.34(7), 1077–1081 (2012). [CrossRef]
  27. S. Guddala, S. Bhaktha B.N., C. Armellini, A. Chiappini, V. Tran, S. Turrell, G. Righini, M. Ferrari, and D. Narayana Rao, “Low-loss erbium activated silica-tin oxide planar waveguides,” in International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper M2B.4. http://www.opticsinfobase.org/abstract.cfm?URI=Photonics-2012-M2B.4 .
  28. B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, “Controlled growth of SnO2 nanocrystals in Eu3+-Doped SiO2-SnO2 planar waveguides: a spectroscopic investigation,” J. Phys. Chem. C113(52), 21555–21559 (2009). [CrossRef]
  29. A. Imhof, “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells,” Langmuir17(12), 3579–3585 (2001). [CrossRef]
  30. S. A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and R. Kesavamoorthy, “Diffraction in crystalline colloidal-array photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 066619 (2004). [CrossRef] [PubMed]
  31. İ. İnanç Tarhan and G. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B54(11), 7593–7597 (1996). [CrossRef]
  32. J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003). [CrossRef]
  33. R. Lorenzi, A. Lauria, N. Mochenova, N. Chiodini, and A. Paleari, “Study of the absorption edge of SnO2 nanoparticles embedded in silica films,” J. Non-Cryst. Solids357(8-9), 1888–1891 (2011). [CrossRef]
  34. S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria, R. Lorenzi, B. Vodopivec, M. C. Mozzati, and A. Paleari, “Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study,” Phys. Rev. B79(15), 153108 (2009). [CrossRef]
  35. M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011). [CrossRef]
  36. N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett.90(5), 055507 (2003). [CrossRef] [PubMed]
  37. A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” Sens. Actuators B Chem.130(1), 567–573 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited