OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 574–583

Femtosecond laser induced structural changes in fluorozirconate glass

Simon Gross, David G. Lancaster, Heike Ebendorff-Heidepriem, Tanya M. Monro, Alexander Fuerbach, and Michael J. Withford  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 5, pp. 574-583 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorozirconate glasses, such as ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF), have a high infrared transparency and large rare-earth solubility, which makes them an attractive platform for highly efficient and compact mid-IR waveguide lasers. We investigate the structural changes within the glass network induced by high repetition rate femtosecond laser pulses and reveal the origin of the observed decrease in refractive index by using Raman microscopy. The high repetition rate pulse train causes local melting followed by rapid quenching of the glass network. This results in breaking of bridging bonds between neighboring zirconium fluoride polyhedra and as the glass resolidifies, a larger fraction of single bridging fluorine bonds relative to double bridging links are formed in comparison to the pristine glass. The distance between adjacent zirconium cations is larger for single bridging than double bridging links and consequently an expansion of the glass network occurs. The rarified glass network can be related to the experimentally observed decrease in refractive index via the Lorentz-Lorenz equation.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(260.5210) Physical optics : Photoionization
(300.6450) Spectroscopy : Spectroscopy, Raman
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Materials Processing

Original Manuscript: February 11, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: March 26, 2013
Published: April 5, 2013

Simon Gross, David G. Lancaster, Heike Ebendorff-Heidepriem, Tanya M. Monro, Alexander Fuerbach, and Michael J. Withford, "Femtosecond laser induced structural changes in fluorozirconate glass," Opt. Mater. Express 3, 574-583 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008). [CrossRef]
  2. S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. Aitchison, and P. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett.18, 2174–2176 (2006). [CrossRef]
  3. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009). [CrossRef] [PubMed]
  4. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9, 91–96 (2009). [CrossRef] [PubMed]
  5. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express17, 1963–1969 (2009). [CrossRef] [PubMed]
  6. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009). [CrossRef]
  7. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16, 20029–20037 (2008). [CrossRef] [PubMed]
  8. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19, 7929–7936 (2011). [CrossRef] [PubMed]
  9. J. Chan, T. Huser, S. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process.76, 367–372 (2003). [CrossRef]
  10. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys.99, 123112 (2006). [CrossRef]
  11. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2008). [CrossRef]
  12. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26, 1726–1728 (2001). [CrossRef]
  13. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B19, 2496–2504 (2002). [CrossRef]
  14. F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett.87, 021109 (2005). [CrossRef]
  15. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42, 715–718 (2011). [CrossRef]
  16. L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys.106, 083107 (2009). [CrossRef]
  17. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108, 033110 (2010). [CrossRef]
  18. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett.29, 748–750 (2004). [CrossRef] [PubMed]
  19. L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the photoresponse of chalco-genide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron.14, 1323–1334 (2008). [CrossRef]
  20. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids263–264, 1–28 (2000). [CrossRef]
  21. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids184, 9–20 (1995). [CrossRef]
  22. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun.132, 73–76 (1996). [CrossRef]
  23. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express20, 27503–27509 (2012). [CrossRef] [PubMed]
  24. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, “Comparison of different theories for focusing through a plane interface,” J. Opt. Soc. Am. A14, 1482–1490 (1997). [CrossRef]
  25. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33, 2861–2863 (2008). [CrossRef] [PubMed]
  26. C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process.76, 351–354 (2003). [CrossRef]
  27. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008). [CrossRef] [PubMed]
  28. O. F. Nielsen, Low-Frequency Raman Spectroscopy and Biomolecular Dynamics: A Comparison Between Different Low-Frequency Experimental Techniques. Collectivity of Vibrational Modes, 1st ed. (CRC Press, 2001), Chap. 15.
  29. R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys.74, 5954–5961 (1981). [CrossRef]
  30. Y. Kawamoto and F. Sakaguchi, “Thermal properties and Raman spectra of crystalline and vitreous BaZrF6, PbZrF6, and SrZrF6,” Bull. Chem. Soc. Jpn.56, 2138–2141 (1983). [CrossRef]
  31. Y. Kawamoto, T. Horisaka, K. Hirao, and N. Soga, “A molecular dynamics study of barium meta-fluorozirconate glass,” J. Chem. Phys.83, 2398–2404 (1985). [CrossRef]
  32. C. C. Phifer, C. Austen Angell, J. Laval, and J. Lucas, “A structural model for prototypical fluorozirconate glass,” J. Non-Cryst. Solids94, 315–335 (1987). [CrossRef]
  33. B. Boulard, J. Kieffer, C. C. Phifer, and C. Angell, “Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation,” J. Non-Cryst. Solids140, 350–358 (1992). [CrossRef]
  34. E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Quantum chemical study of model fluorozirconate clusters,” J. Struct. Chem.41, 41–47 (2000). [CrossRef]
  35. L. N. Ignatieva, S. a. Polishchuk, and V. M. Bouznik, “Quantum chemical and spectroscopic study of fluoride glass,” Rev. Inorg. Chem.19, 31–44 (1999). [CrossRef]
  36. E. I. Voit, A. V. Voit, A. V. Gerasimenko, and V. I. Sergienko, “Relationship between the energy characteristics of formation of fluorozirconates,” J. Struct. Chem.41, 206–211 (2000). [CrossRef]
  37. Y. Kawamoto and T. Horisaka, “Short-range structures of barium, lead, and strontium meta-fluorozirconate glasses,” J. Non-Cryst. Solids56, 39–44 (1983). [CrossRef]
  38. R. Coupé, D. Louër, J. Lucas, and A. J. Léonard, “X-ray scattering studies of glasses in the system ZrF4-BaF2,” J. Am. Ceram. Soc.66, 523–529 (1983). [CrossRef]
  39. G. E. Walrafen, M. S. Hokmabadi, S. Guha, P. N. Krishnan, and D. C. Tran, “Low-frequency Raman investigation of lead-containing fluorozirconate glasses and melts,” J. Chem. Phys.83, 4427–4443 (1985). [CrossRef]
  40. R. M. Almeida and J. D. Mackenzie, “A structural interpretation of the vibrational spectra of binary fluorohafnate glasses,” J. Chem. Phys.78, 6502–6512 (1983). [CrossRef]
  41. R. M. Almeida, “Vibrational spectroscopy of glasses,” J. Non-Cryst. Solids106, 347–358 (1988). [CrossRef]
  42. C. C. Phifer, D. J. Gosztola, J. Kieffer, and C. Austen Angell, “Effects of coordination environment on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts,” J. Chem. Phys.94, 3440–3450 (1991). [CrossRef]
  43. S. Aasland, M.-A. Einarsrud, T. Grande, and P. F. McMillan, “Spectroscopic investigations of fluorozirconate glasses in the ternary systems ZrF4–BaF2–AF (A = Na, Li),” J. Phys. Chem.100, 5457–5463 (1996). [CrossRef]
  44. R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56, 63–68 (1983). [CrossRef]
  45. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci.3, 332–348 (2012). [CrossRef]
  46. J. Rousset, M. Ferrari, E. Duval, A. Boukenter, C. Mai, S. Etienne, and J. Adam, “First stages of the crystallization in fluorozirconate glasses,” J. Non-Cryst. Solids111, 238–244 (1989). [CrossRef]
  47. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett.32, 454–456 (2007). [CrossRef] [PubMed]
  48. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26, 93–95 (2001). [CrossRef]
  49. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36, 1587–1589 (2011). [CrossRef] [PubMed]
  50. R. Sramek, F. Smektala, W. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277, 39–44 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited