OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 651–657

Alkaline oxide interface modifiers for silicon fiber production

Erlend F. Nordstrand, Andrew N. Dibbs, Andreas J. Eraker, and Ursula J. Gibson  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 5, pp. 651-657 (2013)
http://dx.doi.org/10.1364/OME.3.000651


View Full Text Article

Enhanced HTML    Acrobat PDF (1488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the ability to pull small diameter silicon-core fibers with low oxygen content by using interface modifiers between the silica cladding and the semiconductor. Alkali earths scavenge oxygen and form a fine-structured eutectic that accommodates thermal strain and may be useful as an intermediate index cladding layer for optical applications. NaO, MgO, SrO, CaO and BaO interface modifiers were tested. CaO coated fibers were made with core diameters down to 10 microns, small bending radii, low oxygen incorporation, and optical losses below 4 dB/cm at 1.55 microns.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: March 15, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 17, 2013
Published: April 23, 2013

Citation
Erlend F. Nordstrand, Andrew N. Dibbs, Andreas J. Eraker, and Ursula J. Gibson, "Alkaline oxide interface modifiers for silicon fiber production," Opt. Mater. Express 3, 651-657 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-5-651


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013). [CrossRef]
  2. M. Saad, “Indium fluoride glass fibers,” Proc. SPIE8275, 82750D, 82750D–6 (2012). [CrossRef]
  3. A. Peacock and N. Healy, “Parabolic pulse generation in tapered silicon fibers,” Opt. Lett.35(11), 1780–1782 (2010). [CrossRef] [PubMed]
  4. D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007). [CrossRef]
  5. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010). [CrossRef]
  6. B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng.48(10), 100501 (2009). [CrossRef]
  7. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express16(23), 18675–18683 (2008). [CrossRef] [PubMed]
  8. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express17(10), 8029–8035 (2009). [CrossRef] [PubMed]
  9. B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-type silicon optical fibers,” IEEE Photon. Technol. Lett.21(24), 1798–1800 (2009). [CrossRef]
  10. T. Minami, S. Maeda, M. Higasa, and K. Kashima, “In-situ observation of bubble formation at silicon melt–silica glass interface,” J. Cryst. Growth318(1), 196–199 (2011). [CrossRef]
  11. S. M. Schnurre and R. Schmid-Fetzer, “Reactions at the liquid silicon/silica glass interface,” J. Cryst. Growth250(3-4), 370–381 (2003). [CrossRef]
  12. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010). [CrossRef]
  13. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express1(6), 1141–1149 (2011). [CrossRef]
  14. S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fibers,” Opt. Mater. Express2(11), 1511–1519 (2012). [CrossRef]
  15. K. Wilm and G. Frischat, “Coating and diffusion studies to improve the performance of silica glass crucibles for the preparation of semiconducting silicon single crystals,” Glass Technol. - Eur. J. Glass Sci. Technol. A47(1), 7–14 (2006).
  16. A. Cröll, R. Lantzsch, S. Kitanov, N. Salk, F. R. Szofran, and A. Tegetmeier, “Melt-crucible wetting behavior in semiconductor melt growth systems,” Cryst. Res. Technol.38(78), 669–675 (2003). [CrossRef]
  17. I. Brynjulfsen, A. Bakken, M. Tangstad, and L. Arnberg, “Influence of oxidation on the wetting behavior of liquid silicon on Si3N4-coated substrates,” J. Cryst. Growth312(16-17), 2404–2410 (2010). [CrossRef]
  18. F. A. Martinsen, E. F. Nordstrand, and U. J. Gibson, “Purification of melt-spun metallurgical grade silicon micro-flakes through a multi-step segregation procedure,” J. Cryst. Growth363, 33–39 (2013). [CrossRef]
  19. F. He, S. Zheng, and C. Chen, “The effect of calcium oxide addition on the removal of metal impurities from metallurgical-grade silicon by acid leaching,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.43(5), 1011–1018 (2012). [CrossRef]
  20. M. D. Himel and U. J. Gibson, “Measurement of planar waveguide losses using a coherent fiber bundle,” Appl. Opt.25(23), 4413–4416 (1986). [CrossRef] [PubMed]
  21. M. H. Jenkins, B. S. Phillips, Y. Zhao, M. R. Holmes, H. Schmidt, and A. R. Hawkins, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun.284(16-17), 3980–3982 (2011). [CrossRef] [PubMed]
  22. Lambda-Photometrics, “Model2010” http://www.lambdaphoto.co.uk/products/150.110.100.007 (2013).
  23. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A. D. Pelton, and S. Petersen, “FactSage thermochemical software and database,” Calphad26(2), 189–228 (2002). [CrossRef]
  24. A. Cruz-Ramírez, J. Romo-Castañeda, M. Á. Hernández-Pérez, M. Vargas-Ramírez, A. Romero-Serrano, and M. Hallen-López, “An application of infrared analysis to determine the mineralogical phases formation in fluxes for thin slab casting of steel,” J. Fluor. Chem.132(5), 323–326 (2011). [CrossRef]
  25. X. Huang, S. Koh, K. Wu, M. Chen, T. Hoshikawa, K. Hoshikawa, and S. Uda, “Reaction at the interface between Si melt and a Ba-doped silica crucible,” J. Cryst. Growth277(1-4), 154–161 (2005). [CrossRef]
  26. D. Romero, J. M. F. Romero, and J. J. Romero, “Distribution of metal impurities in silicon wafers using imaging-mode multi-elemental laser-induced breakdown spectrometry,” J. Anal. At. Spectrom.14(2), 199–204 (1999). [CrossRef]
  27. A. J. Eraker and U. J. Gibson (Dept. of Physics, Norwegian Univ. of Sci. and Technol., 7491 Trondheim, Norway) are preparing a manuscript to be called “Optical loss measurements in silicon fibers”.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited