OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 700–710

Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses

William T. Shoulders, Jacklyn Novak, Marc Dussauze, J. David Musgraves, and Kathleen Richardson  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 700-710 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Second-order optical properties of thermally poled arsenic-germanium sulfide glasses have been investigated. Parallel studies of glass structure changes upon poling and/or visible cw-laser irradiation and complete SHG quantitative analysis have been performed. Key parameters and poling mechanisms influencing largely SHG stability and efficiency have been pointed out.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optical Materials

Original Manuscript: February 11, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 9, 2013
Published: May 1, 2013

William T. Shoulders, Jacklyn Novak, Marc Dussauze, J. David Musgraves, and Kathleen Richardson, "Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses," Opt. Mater. Express 3, 700-710 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  2. Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett.39(6), 466–468 (1981). [CrossRef]
  3. U. Österberg and W. Margulis, “Experimental studies on efficient frequency doubling in glass optical fibers,” Opt. Lett.12(1), 57–59 (1987). [CrossRef] [PubMed]
  4. M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express14(4), 1524–1532 (2006). [CrossRef] [PubMed]
  5. M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express2(1), 45–54 (2012). [CrossRef]
  6. H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater.31(6), 865–869 (2009). [CrossRef]
  7. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010). [CrossRef]
  8. P. Thamboon and D. M. Krol, “Second-order optical nonlinearities in thermally poled phosphate glasses,” J. Appl. Phys.93(1), 32–37 (2003). [CrossRef]
  9. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16(22), 1732–1734 (1991). [CrossRef] [PubMed]
  10. M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater.17(16), 3284–3294 (2007). [CrossRef]
  11. M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci.3(4), 309–320 (2012). [CrossRef]
  12. R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, and Y. Tsujiie, “Second-harmonic generation in thermally poled chalcohalide glass,” Opt. Lett.31(23), 3492–3494 (2006). [CrossRef] [PubMed]
  13. N. Carlie, “A solution-based approach to the fabrication of novel chalcogenide glass materials and structures,” in Materials Science and Engineering (Clemson University, Clemson, SC, 2010), p. 163.
  14. C. Lopez, “Evaluation of the photo-induced structural mechanisms in chalcogenide glass,” in College of Optics and Photonics (University of Central Florida, Orlando, FL, 2004).
  15. V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: theory and materials,” J. Chem. Phys.128(6), 064707–064710 (2008). [CrossRef] [PubMed]
  16. C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem.181(10), 2869–2876 (2008). [CrossRef]
  17. A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968). [CrossRef]
  18. G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B6(4), 1480–1489 (1972). [CrossRef]
  19. G. Lucovsky and R. M. Martin, “A molecular model for the vibrational modes in chalcogenide glasses,” J. Non-Cryst. Solids8–10, 185–190 (1972). [CrossRef]
  20. M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc.52(11), 1391–1401 (1996). [CrossRef]
  21. K. Tanaka, “Photo-induced phenomena in chalcogenide glass: comparison with those in oxide glass and polymer,” J. Non-Cryst. Solids352(23-25), 2580–2584 (2006). [CrossRef]
  22. L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys.43(44), 445401 (2010). [CrossRef]
  23. H. Fritzsche, “The origin of reversible and irreversible photostructural changes in chalcogenide glasses,” Philos. Mag. B68, 561–572 (1993).
  24. D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral.77, 1266–1274 (1992).
  25. K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem.68(10), 1755–1761 (1996). [CrossRef]
  26. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993). [CrossRef]
  27. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett.12(8), 585–587 (1987). [CrossRef] [PubMed]
  28. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys.86(12), 6634–6640 (1999). [CrossRef]
  29. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998). [CrossRef]
  30. D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett.79(17), 2687–2689 (2001). [CrossRef]
  31. M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express13(11), 4064–4069 (2005). [CrossRef] [PubMed]
  32. M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C111(39), 14560–14566 (2007). [CrossRef]
  33. K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter42(18), 11857–11861 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited