OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 794–805

Local photochemical plasmon mode tuning in metal nanoparticle arrays

Susan Derenko, René Kullock, Zhi Wu, Andrew Sarangan, Christiane Schuster, Lukas M. Eng, and Thomas Härtling  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 6, pp. 794-805 (2013)
http://dx.doi.org/10.1364/OME.3.000794


View Full Text Article

Enhanced HTML    Acrobat PDF (1374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the local modification of gold nanoparticle arrays by photochemical deposition of gold from solution. Our method allows to alter the localized surface plasmon resonance (LSPR) in a restricted area by exposure of gold salt (HAuCl4) to light, whereas the expansion of such sections depends on the illumination optics. The geometry parameters of the individual nanoparticles in the modified regions are characterized by SEM and AFM, while the optical properties of distinct array sections are analyzed by means of optical spectroscopy. A blueshift of the surface plasmon resonance wavelength is observed upon the deposition process. An explanation for the blueshift is found by performing calculations using an analytical dipolar interaction model (DIM), which allows us to distinguish the individual contributions of the particle geometry on the one hand and the changes in particle interaction on the other hand. The resulting simulated scattering spectra verify the blueshift of the LSPR, which can be attributed to an increase in aspect ratio of the particles during growth. Since plasmonically active nanoparticle arrays are known to be candidates for sensing applications, this method and the gained understanding can be exploited to fabricate large sensor substrates with local LSPR variations.

© 2013 OSA

OCIS Codes
(160.3900) Materials : Metals
(240.6670) Optics at surfaces : Surface photochemistry
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Plasmonics

History
Original Manuscript: March 28, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 25, 2013
Published: May 14, 2013

Citation
Susan Derenko, René Kullock, Zhi Wu, Andrew Sarangan, Christiane Schuster, Lukas M. Eng, and Thomas Härtling, "Local photochemical plasmon mode tuning in metal nanoparticle arrays," Opt. Mater. Express 3, 794-805 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-6-794


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  3. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004). [CrossRef] [PubMed]
  4. W. A. Murray, B. Auguié, and W. Barnes, “Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment,” J. Phys. Chem. C113(13), 5120–5125 (2009). [CrossRef]
  5. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009). [CrossRef] [PubMed]
  6. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater.22(16), 1805–1825 (2010). [CrossRef] [PubMed]
  7. V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep.65(1-3), 1–38 (2009). [CrossRef]
  8. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998). [CrossRef]
  9. X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano Lett.5(7), 1503–1507 (2005). [CrossRef] [PubMed]
  10. M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing,” J. Appl. Phys.109(7), 074310 (2011). [CrossRef]
  11. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, and B. Kasemo, “Hole-mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007). [CrossRef]
  12. T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann, and L. M. Eng, “Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays,” Nanotechnology21(14), 145309 (2010). [CrossRef] [PubMed]
  13. T. Härtling, T. Uhlig, A. Seidenstücker, N. C. Bigall, P. Olk, U. Wiedwald, L. Han, A. Eychmüller, A. Plettl, P. Ziemann, and L. M. Eng, “Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition,” Appl. Phys. Lett.96(18), 183111 (2010). [CrossRef]
  14. T. Härtling, Y. Alaverdyan, M. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C112(13), 4920–4924 (2008). [CrossRef]
  15. R. Kullock, S. Grafström, P. Evans, R. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010). [CrossRef]
  16. L. L. Zhao, K. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003). [CrossRef]
  17. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005). [CrossRef] [PubMed]
  18. E. Gachard, H. Remita, J. Khatouri, B. Keita, L. Nadjo, and J. Belloni, “Radiation-induced and chemical formation of gold clusters,” New J. Chem.22(11), 1257–1265 (1998). [CrossRef]
  19. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993). [CrossRef] [PubMed]
  20. W. S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ , (1997–2012).
  21. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1998).
  22. A. Wokaun, “Surface enhancement of optical fields,” Mol. Phys.56(1), 1–33 (1985). [CrossRef]
  23. T. Sakai, H. Enomoto, K. Torigoe, H. Sakai, and M. Abe, “Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions,” Colloids Surf. A Physicochem. Eng. Asp.347(1-3), 18–26 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited