OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 829–841

Orientation control of micro-domains in anisotropic laser ceramics

Yoichi Sato, Jun Akiyama, and Takunori Taira  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 829-841 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present theoretical studies on the orientation control of micro-domains in anisotropic laser ceramics, and produce the distribution function of the crystal orientation in micro-domains including anisotropic laser ceramics. Also the improvement in the orientation distribution caused by preferential grain growth is discussed, where our theoretical analyses were applied to several different Nd:FAP ceramics. Detailed XRD analyses based on this distribution function show that the preferential grain growth improved the orientation distribution of the green body that was slip-casted under magnetic field.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Laser Materials

Original Manuscript: March 15, 2013
Revised Manuscript: May 9, 2013
Manuscript Accepted: May 13, 2013
Published: May 17, 2013

Virtual Issues
Optical Ceramics (2013) Optical Materials Express

Yoichi Sato, Jun Akiyama, and Takunori Taira, "Orientation control of micro-domains in anisotropic laser ceramics," Opt. Mater. Express 3, 829-841 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000). [CrossRef]
  2. A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep.50(5), 869–873 (2005). [CrossRef]
  3. S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA1. [CrossRef]
  4. Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater.29(10), 1277–1282 (2007). [CrossRef]
  5. Y. Sato, A. Ikesue, and T. Taira, “Tailored spectral designing of layer-by-layer type composite Nd:Y3ScAl4O12/Nd:Y3Al5O12 ceramics,” IEEE J. Sel. Top. Quantum Electron.13(3), 838–843 (2007). [CrossRef]
  6. Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into emitting level,” Appl. Phys. Lett.82(6), 844–846 (2003). [CrossRef]
  7. S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron.30(1), 170–179 (1994). [CrossRef]
  8. T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics [Invited],” Opt. Mater. Express1(5), 1040–1050 (2011). [CrossRef]
  9. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995). [CrossRef]
  10. W. D. Kingerly, H. K. Brown, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, 1975), Chap. 5.
  11. M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004). [CrossRef]
  12. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express20(18), 20002–20010 (2012). [CrossRef] [PubMed]
  13. H. Morikawa, Y. Sassa, and S. Asai, “Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field,” Mater. Trans., JIM39(8), 814–818 (1998).
  14. M. Yamaguchi, S. Ozawa, I. Yamamoto, and T. Kimura, “Characterization of three-dimensional magnetic alignment for magnetically biaxial particles,” Jpn. J. Appl. Phys.52, 013003 (2013). [CrossRef]
  15. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010). [CrossRef] [PubMed]
  16. J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011). [CrossRef]
  17. F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem.9(2), 113–123 (1959). [CrossRef]
  18. S. Mizuta and K. Koumoto, Materials Science for Ceramics (University of Tokyo Press, Tokyo, 1996), p. 237.
  19. Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi C (2013), doi:. [CrossRef]
  20. N. Leroy and E. Bres, “Structure and substitutions in fluorapatite,” Eur. Cell. Mater.2, 36–48 (2001). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited