OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 875–883

Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding

Yuya Daicho, Terumasa Murakami, Tsuneo Hagiwara, and Shoji Maruo  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 875-883 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed new photopolymers for use in the formation of three-dimensional (3-D) carbon microstructures via two-photon microfabrication and microtransfer molding. The photopolymers contain the epoxy resorcinol diglycidyl ether. They have a high carbon content and a high bond energy, ensuring structural fidelity of the microstructures after pyrolysis. A cationic photoinitiator is incorporated into one of the new photopolymers and an additional radical photoinitiator into another. These two photopolymers are found to be ideal for two-photon microfabrication and microtransfer molding, respectively, with complex 3-D carbon microstructures such as a bunny and pyramidal models being formed. Potential applications of the new photopolymers include 3-D carbon electrodes for fuel cells or batteries and interfaces for biosensors.

© 2013 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing
(080.2205) Geometric optics : Fabrication, injection molding
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Laser Materials Processing

Original Manuscript: March 18, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 25, 2013
Published: May 29, 2013

Yuya Daicho, Terumasa Murakami, Tsuneo Hagiwara, and Shoji Maruo, "Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding," Opt. Mater. Express 3, 875-883 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep.37(4-6), 129–281 (2002). [CrossRef]
  2. C. Wang, R. Zaouk, B. Y. Park, and M. J. Madou, “Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon,” Int. J. Manuf. Technol. Manage.13, 360–375 (2008).
  3. M. Y. Liao and Y. Koide, “Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches,” Crit. Rev. Solid State Mater. Sci.36(2), 66–101 (2011). [CrossRef]
  4. J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, “Diamond and diamond-like carbon MEMS,” J. Micromech. Microeng.17(7), S147–S163 (2007). [CrossRef]
  5. O. J. A. Schueller, S. T. Brittain, C. Marzolin, and G. M. Whitesides, “Fabrication and characterization of glassy carbon MEMS,” Chem. Mater.9(6), 1399–1406 (1997). [CrossRef]
  6. O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, “Fabrication of glassy carbon microstructures by soft lithography,” Sens. Actuators A Phys.72(2), 125–139 (1999). [CrossRef]
  7. C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst.14(2), 348–358 (2005). [CrossRef]
  8. M. Madou and S. Sharma, “Micro and nano patterning of carbon electrodes for bioMEMS,” Bioinspired Biomimetic Nanobiomaterials1(4), 252–265 (2012). [CrossRef]
  9. S. Ranganathan, R. McCreery, S. M. Majji, and M. Madou, “Photoresist-derived carbon for microelectromechanical systems and electrochemical applications,” J. Electrochem. Soc.147(1), 277–282 (2000). [CrossRef]
  10. V. Penmatsa, H. Kawarada, and C. Wang, “Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis,” J. Micromech. Microeng.22(4), 045024 (2012). [CrossRef]
  11. J. A. Lee, S. W. Lee, K.-C. Lee, S. I. Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” J. Micromech. Microeng.18(3), 035012 (2008). [CrossRef]
  12. A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators B Chem.153(1), 125–134 (2011). [CrossRef]
  13. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  14. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  15. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008). [CrossRef]
  16. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008). [CrossRef]
  17. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.7(1), 22–44 (2013). [CrossRef]
  18. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004). [CrossRef]
  19. C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U.S.A.103(23), 8589–8594 (2006). [CrossRef] [PubMed]
  20. S. Maruo, T. Hasegawa, and N. Yoshimura, “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys.48(6), 06FH05 (2009). [CrossRef]
  21. S.-H. Park, T.-W. Lim, D.-Y. Yang, J.-H. Jeong, K.-D. Kim, K.-S. Lee, and H.-J. Kong, “Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,” Appl. Phys. Lett.88(20), 203105 (2006). [CrossRef]
  22. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009). [CrossRef] [PubMed]
  23. T. Torii, M. Inada, and S. Maruo, “Three-dimensional molding based on microstereolithography using beta-tricalcium phosphate slurry for the production of bioceramic scaffolds,” Jpn. J. Appl. Phys.50(6), 06GL15 (2011). [CrossRef]
  24. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000). [CrossRef]
  25. R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, and R. Kötz, “Surface studies of carbon films from pyrolyzed photoresist,” Thin Solid Films396(1-2), 36–43 (2001). [CrossRef]
  26. S. Tabata, Y. Isshiki, and M. Watanabe, “Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors,” J. Electrochem. Soc.155(3), K42–K49 (2008). [CrossRef]
  27. B. Park, L. Taherabadi, C. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc.152(12), J136–J143 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited