OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 1 — Jan. 1, 2014
  • pp: 142–154

Multicolor bright Ln3+ (Ln = Eu, Dy, Sm) activated tungstate phosphor for multifunctional applications

Qian Wang, Zhipeng Ci, Ge Zhu, Shuangyu Xin, Wei Zeng, Meidan Que, and Yuhua Wang  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 1, pp. 142-154 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2678 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A series of multifunctional phosphors Y2WO6: Ln3+ (Ln = Eu, Sm, Dy) were prepared by solid state reaction. The phase purity, luminescent properties and energy transfer from WO66- to Ln3+ are investigated by the X-ray diffractometer, photoluminescence and cathodoluminescence spectra, as well as decay lifetimes, respectively. The band gap of Y2WO6 is calculated to be about 3.139 eV, in agreement with the value of 3.184 eV obtained from the reflection spectrum. When excited by vacuum ultra violet light at 147 nm, the emission intensity of Y2WO6: Eu3+ can reach 66% of that of commercial (Y,Gd)BO3: Eu3+ (KX-504A), and Y2WO6: Dy3+ and Y2WO6: Sm3+ show white light emission. The white light emission can also be obtained under ultraviolet excitation at 319 nm. Under the electron beam excitation, the Y2WO6: Sm3+, Y2WO6: Dy3+ and Y2WO6: Eu3+ show tunable white, blue and red emissions with excellent degradation properties, respectively. These results reveal that the Y2WO6: Eu3+, Y2WO6: Sm3+ and Y2WO6: Dy3+ may have potential applications in three-dimensional plasma display panels, light-emitting diodes and field emission displays.

© 2013 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(250.1500) Optoelectronics : Cathodoluminescence
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: November 15, 2013
Revised Manuscript: November 24, 2013
Manuscript Accepted: November 24, 2013
Published: December 17, 2013

Qian Wang, Zhipeng Ci, Ge Zhu, Shuangyu Xin, Wei Zeng, Meidan Que, and Yuhua Wang, "Multicolor bright Ln3+ (Ln = Eu, Dy, Sm) activated tungstate phosphor for multifunctional applications," Opt. Mater. Express 4, 142-154 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. M. Zhang, C. F. Guo, and H. Jing, “Photoluminescence and cathode-luminescence of Eu3+ -doped NaLnTiO4 (Ln = Gd and Y) phosphors,” RSC Adv.3(20), 7495–7502 (2013). [CrossRef]
  2. T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5:Tb3+ phosphors,” Appl. Phys. Lett.89(13), 131121 (2006). [CrossRef]
  3. H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C111(28), 10657–10661 (2007). [CrossRef]
  4. B. Han, H. B. Liang, H. Y. Ni, Q. Su, G. T. Yang, J. Y. Shi, and G. B. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express17(9), 7138–7144 (2009). [CrossRef] [PubMed]
  5. D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, and D. H. Yoon, “New fast-decaying green and red phosphors for 3D application of plasma display panels,” J. Lumin.129(9), 1088–1093 (2009). [CrossRef]
  6. L. X. Yang, X. Xu, L. Y. Hao, X. F. Yang, and S. Agathopoulos, “Synthesis and characterization of fast-decaying bluish green phosphors of Tb3+-doped CaSi2O2N2 for 2D/3D plasma display panels,” J. Lumin.132(6), 1540–1543 (2012). [CrossRef]
  7. J. D. Ghys, R. Mauricot, B. Caillier, P. Guillot, T. Beaudette, G. H. Jia, P. A. Tanner, and B. M. Cheng, “VUV excitation of YBO3 and (Y,Gd)BO3 phosphors doped with Eu3+ or Tb3+: Comparison of efficiencies and effect of site-electivity,” J. Phys. Chem. C114(14), 6681–6689 (2010). [CrossRef]
  8. Y. B. Mao, T. Tran, X. Guo, J. Y. Huang, C. K. Shih, K. L. Wang, and J. P. Chang, “Luminescence of nanocrystalline erbium-doped yttria,” Adv. Funct. Mater.19(5), 748–754 (2009). [CrossRef]
  9. Z. L. Wang, H. L. W. Chan, H. L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (Ln = Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett.93(14), 141106 (2008). [CrossRef]
  10. X. M. Liu, C. K. Lin, and J. Lin, “White light emission from Eu3+ in CaIn2O4 host lattices,” Appl. Phys. Lett.90(8), 081904 (2007). [CrossRef]
  11. N. Hirosaki, R. J. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett.91(6), 061101 (2007). [CrossRef]
  12. S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000). [CrossRef]
  13. M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver, and M. J. Snowden, “A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid,” Langmuir17(22), 7145–7149 (2001). [CrossRef]
  14. P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B17(2), 758–764 (1999). [CrossRef]
  15. J. S. Sebastian, H. C. Swart, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of ZnS field-emission display phosphors during electron-beam bombardment,” J. Vac. Sci. Technol. A15(4), 2349–2353 (1997). [CrossRef]
  16. E. Coetsee, H. C. Swart, and J. J. Terblans, “Cathodoluminescence degradation of Y2SiO5:Ce thin films,” J. Vac. Sci. Technol. A25(4), 1226–1230 (2007). [CrossRef]
  17. S. S. Pitale, V. Kumar, I. M. Nagpure, O. M. Ntwaeaborwa, E. Coetsee, and H. C. Swart, “Cathodoluminescent properties and surface characterization of bluish-white LiAl5O8:Tb phosphor,” J. Appl. Phys.109(1), 013105 (2011). [CrossRef]
  18. V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000). [CrossRef]
  19. F. Zhang, S. Yang, C. Stoffers, J. Penczek, P. Yocom, D. Zaremba, B. Wagner, and C. Summers, “Low voltage cathodoluminescence properties of blue emitting SrGa2S4:Ce3+ and ZnS:Ag,Cl phosphors,” Appl. Phys. Lett.72(18), 2226–2228 (1998). [CrossRef]
  20. R. J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma, and N. Kiumra, “Wavelength-tunable and thermally stable Li-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” Appl. Phys. Lett.89(24), 241103 (2006). [CrossRef]
  21. C. K. Chang and T. M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7: Eu, Mn through energy transfer,” Appl. Phys. Lett.90(16), 161901 (2007). [CrossRef]
  22. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett.64(13), 1687–1689 (1994). [CrossRef]
  23. J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett.97(11), 111105 (2010). [CrossRef]
  24. J. Zhang, H. P. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett.98(17), 171111 (2011). [CrossRef]
  25. Y. Taniyasu and M. Kasu, “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices,” Appl. Phys. Lett.99(25), 251112 (2011). [CrossRef]
  26. E. F. Pecora, W. Zhang, A. Y. Nikiforov, L. Zhou, D. J. Smith, J. Yin, R. Paiella, L. D. Negro, and T. D. Moustakas, “Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations,” Appl. Phys. Lett.100(6), 061111 (2012). [CrossRef]
  27. J. Zhang, W. Tian, F. Wu, W. Y. Yan, H. Xiong, J. N. Dai, Y. Y. Fang, Z. H. Wu, and C. Q. Chen, “The advantages of AlGaN-Based UV-LEDs inserted with a p-AlGaN layer between the EBL and active region,” IEEE Photonics J5(4), 1600310 (2013). [CrossRef]
  28. G. H. Lee, T. H. Kim, C. Yoon, and S. Kang, “Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDS,” J. Lumin.128(12), 1922–1926 (2008). [CrossRef]
  29. H. Wang, C. Tu, Z. You, F. Yang, Y. Wei, Y. Wang, J. Li, Z. Zhu, G. Jia, and X. Lu, “Conversion of infrared radiation into visible emission in NaGd(WO4)2:Yb3+, Ho3+crystals,” Appl. Phys. B88(1), 57–60 (2007). [CrossRef]
  30. P. Y. Jia, X. M. Liu, M. Yu, Y. Luo, J. Fang, and J. Lin, “Luminescence properties of sol–gel derived spherical SiO2@Gd2(WO4)3: Eu3+ particles with core–shell structure,” Chem. Phys. Lett.424(4-6), 358–363 (2006). [CrossRef]
  31. B. Yan, L. X. Lin, J. H. Wu, and F. Lei, “Photoluminescence of rare earth phosphors Na0.5Gd 0.5WO4: RE3+ and Na 0.5Gd 0.5(Mo0.75W0.25)O4: RE3+ (RE=Eu, Sm, Dy),” J. Fluoresc.21(1), 203–211 (2011). [CrossRef] [PubMed]
  32. Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo, and X. Y. Chen, “A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals,” Adv. Mater.22(30), 3266–3271 (2010). [CrossRef] [PubMed]
  33. L. P. Li, Y. G. Su, and G. S. Li, “Chemical modifications of red phosphor LaPO4:Eu3+ nanorods to generate white light,” J. Mater. Chem.20(3), 459–465 (2009). [CrossRef]
  34. G. Blasse and B. C. Grabmaier, Luminescence Materials (Springer-Verlag, 1994).
  35. Q. J. Liu, Z. T. Liu, L. P. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of orthorhombic GaPO4,” Solid State Sci.13(5), 1076–1082 (2011). [CrossRef]
  36. N. N. Yamashita, “Luminescence centers of Ca(S:Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S:Se):Sb3+ phosphors,” J. Phys. Soc. Jpn.35(4), 1089–1097 (1973). [CrossRef]
  37. K.-S. Sohn, I. W. Zeon, H. Chang, S. K. Lee, and H. D. Park, “Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R = As, Nb, P, V) system,” Chem. Mater.14(5), 2140–2148 (2002). [CrossRef]
  38. Z. H. Ju, R. P. Wei, X. P. Gao, W. S. Liu, and C. R. Pang, “Red phosphor SrWO4:Eu3+ for potential application in white LED,” Opt. Mater.33(6), 909–913 (2011). [CrossRef]
  39. V. B. Mikhailik, H. Kraus, G. Miller, M. S. Mykhaylyk, and D. Wahl, “Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations,” J. Appl. Phys.97(8), 083523 (2005). [CrossRef]
  40. G. Blasse, “Luminescence of inorganic solids: From isolated centres to concentrated systems,” Prog. Solid State Chem.18(2), 79–171 (1988). [CrossRef]
  41. J. Zhang, Y. H. Wang, Y. Wen, F. Zhang, and B. T. Liu, “Luminescence properties of Ca10K(PO4)7: RE3+ (RE = Ce, Tb, Dy, Tm and Sm) under vacuum ultraviolet excitation,” J. Alloy. Comp.509(14), 4649–4652 (2011). [CrossRef]
  42. N. Ruelle, M. P. Thi, and C. Fouassier, “Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS:Eu,Mn),” Jpn. J. Appl. Phys.31(1), 2786–2790 (1992). [CrossRef]
  43. W. J. Yang and T. M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu,Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett.88(10), 101903 (2006). [CrossRef]
  44. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010). [CrossRef]
  45. Q. H. Zhang, J. Wang, C. W. Yeh, W. C. Ke, R. S. Liu, J. K. Tang, M. B. Xie, H. B. Liang, and Q. Su, “Structure, composition, morphology, photoluminescence and cathodoluminescence properties of ZnGeN2 and ZnGeN2: Mn2+ for field emission displays,” Acta Mater.58(20), 6728–6735 (2010). [CrossRef]
  46. C. Feldman, “Range of 1-10 kev electrons in solids,” Phys. Rev.117(2), 455–459 (1960). [CrossRef]
  47. G. G. Li, X. G. Xu, C. Peng, M. M. Shang, D. L. Geng, Z. Y. Cheng, J. Chen, and J. Lin, “Yellow-emitting NaCaPO4:Mn2+ phosphor for field emission displays,” Opt. Express19(17), 16423–16431 (2011). [CrossRef] [PubMed]
  48. C. Stoffers, R. Y. Lee, J. Penczek, B. K. Wagner, and C. J. Summers, “Saturation effects in Y2SiO5:Tb under low-voltage excitation,” Appl. Phys. Lett.76(8), 949–954 (2000). [CrossRef]
  49. X. G. Xu, J. Chen, S. Z. Deng, N. S. Xu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B28(3), 490–494 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited