OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 396–402

Versatile luminescence of Eu2+,3+-activated fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) suitable for white light emitting diodes

Shuyun Qi, Yanlin Huang, Taiju Tsuboi, Wei Huang, and Hyo Jin Seo  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 2, pp. 396-402 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Eu-doped fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) are prepared by solid state reaction. Unlike conventional Eu-doped materials, coexistence of Eu3+ and Eu2+ ions is found from the photoluminescence of Eu-doped apatites M2Y3[SiO4]3F (M = Sr, Ba) which were prepared in reducing atmosphere. Eu2+ ions are converted from Eu3+ ions in the reduction process. It is suggested that Eu2+ ions occupy A(I) (4f) or A(II) (6h) crystallographic site in the apatite lattices. Intense emission lines due to Eu3+ are observed at 600-630 nm, while broad emission band due to Eu2+ is observed at 450-650 nm. These emissions combined with blue emission from LED are suitable to obtain white light, i.e., white LEDs for lighting and display. Different luminescence characteristics are obtained between Sr2Y3[SiO4]3F:Eu and Ba2Y3[SiO4]3F:Eu, which were prepared in reducing atmosphere.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Liquid Crystals

Original Manuscript: December 19, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: January 22, 2014
Published: January 31, 2014

Virtual Issues
Optical Materials for Flat Panel Displays (2013) Optical Materials Express

Shuyun Qi, Yanlin Huang, Taiju Tsuboi, Wei Huang, and Hyo Jin Seo, "Versatile luminescence of Eu2+,3+-activated fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) suitable for white light emitting diodes," Opt. Mater. Express 4, 396-402 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sudarsanan and R. A. Young, “Significant precision in crystal structural details. Holly springs hydroxyapatite,” Acta Crystallogr. B25(8), 1534–1543 (1969). [CrossRef]
  2. Y. Shen, A. Tok, and Z. Dong, “Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2,” J. Am. Ceram. Soc.93(4), 1176–1182 (2010). [CrossRef]
  3. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006). [CrossRef]
  4. X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010). [CrossRef]
  5. M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994). [CrossRef]
  6. M. Sato, T. Tanakasi, and M. Ohta, “Photostimulated luminescence and structural characterization of Ba5(PO4) 3Cl:Eu2 + phosphors,” J. Electrochem. Soc.141(7), 1851–1855 (1994). [CrossRef]
  7. G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013). [CrossRef]
  8. G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012). [CrossRef]
  9. R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995). [CrossRef]
  10. N. Lakshminarasimhan and U. V. Varadaraju, “Eu3+ luminescence-a structural probe in BiCa4(PO4)3O, an apatite related phosphate,” J. Solid State Chem.177(10), 3536–3544 (2004). [CrossRef]
  11. H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013). [CrossRef]
  12. C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013). [CrossRef]
  13. P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011). [CrossRef]
  14. A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010). [CrossRef]
  15. M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, “Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals,” J. Solid State Chem.184(1), 52–58 (2011). [CrossRef]
  16. G. Blasse and A. Bril, “Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate,” Phys. Lett. A28(8), 572–573 (1969). [CrossRef]
  17. R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999). [CrossRef]
  18. R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999). [CrossRef]
  19. K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001). [CrossRef]
  20. Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007). [CrossRef]
  21. D. R. Tallant, C. H. Seager, and R. L. Simpson, “Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons,” J. Appl. Phys.91(7), 4053–4064 (2002). [CrossRef]
  22. B. Yan and L. L. Kong, “Binary and ternary heterometallic (La3+, Gd3+, Y3+)-Eu3+ functionalized SBA-15 mesoporous hybrids: chemically bonded assembly and photoluminescence,” Nanoscale Res. Lett.5(7), 1195–1203 (2010). [CrossRef] [PubMed]
  23. U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003). [CrossRef]
  24. J. Rubio, “Doubly-divalent rare-earth ions in halide crystals,” J. Phys. Chem. Solids52(1), 101–174 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited