OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 4 — Apr. 1, 2014
  • pp: 823–835

Raman investigation and glass-compositional dependence on blue up-conversion photoluminescence for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses

M. Uchida, T. Hayakawa, T. Suhara, J-R. Duclère, and P. Thomas  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 4, pp. 823-835 (2014)
http://dx.doi.org/10.1364/OME.4.000823


View Full Text Article

Enhanced HTML    Acrobat PDF (1496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, glass-compositional dependence of Tm3+ blue up-conversion photoluminescence (UCPL), which is known to be obtained via three-steps’ energy transfers from Yb3+ to Tm3+ ions under near-infrared light excitation at ~980 nm, is investigated for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses. The third step of energy transfer from Yb3+ to Tm3+ ions is particularly important ((Yb3+, Tm3+); (2F5/2, 3H4)→(2F7/2, 1G4)) since it determines the final blue UCPL intensity from 1G4 level compared to red and near-infrared UCPLs, and so then estimated with varied TlO0.5 and ZnO contents at the expense of TeO2 in the fixed Tm3+ and Yb3+ contents ([Yb3+]/[Tm3+] = 5). The substantial energy transfer rate (ETR) in the third step is evaluated from excitation power dependence of the blue UCPL intensity in comparison with near-infrared UCPL of Tm3+ ions with an aid of analytical method of PL lifetime and Judd-Ofelt theory. It is here revealed that the highest ETR is achieved to be 3.54 × 10−17 cm3/s for the glass composition of 70TeO2-10TlO0.5-19.4ZnO-0.1Tm2O3-0.5Yb2O3, and that the transfer rate is possibly related with the length of TeO2 glass network because a long tellurite glass network can cause segregation of rare-earth elements inducing effective Yb3+-Yb3+ energy migration and less quenching centers like dangling bonds of isolated TeO32-, resulted in the enhancement of the energy transfer for blue UCPL.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4760) Materials : Optical properties
(190.7220) Nonlinear optics : Upconversion
(260.2160) Physical optics : Energy transfer
(180.5655) Microscopy : Raman microscopy

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: December 23, 2013
Revised Manuscript: February 21, 2014
Manuscript Accepted: February 21, 2014
Published: March 26, 2014

Citation
M. Uchida, T. Hayakawa, T. Suhara, J-R. Duclère, and P. Thomas, "Raman investigation and glass-compositional dependence on blue up-conversion photoluminescence for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses," Opt. Mater. Express 4, 823-835 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-4-823


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B61(8), 5280–5292 (2000). [CrossRef]
  2. J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, “Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals,” J. Mater. Chem. C1(40), 6541–6546 (2013). [CrossRef]
  3. M. Quintanilla, N. O. Núñez, W. Cantelar, M. Ocaña, and F. Cussó, “Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics,” J. Appl. Phys.113(17), 174308 (2013). [CrossRef]
  4. N. Ch, R. Babu, C. Srinivasa Rao, M. G. Brik, G. Naga Raju, I. V. Kityk, and N. Veeraiah, “Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O-Y2O3-SiO2 glass system,” Appl. Phys. B110(3), 335–344 (2013).
  5. D. Li, Y. Wang, X. Zhang, H. Dong, L. Liu, G. Shi, and Y. Song, “Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals,” J. Appl. Phys.112(9), 094701 (2012). [CrossRef]
  6. W. F. Silva, F. G. Rego-Filho, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Highly efficient upconversion emission and luminescence switching from Yb3+/Tm3+ co-doped water-free low silica calcium aluminosilicate glass,” J. Lumin.128(5–6), 744–746 (2008). [CrossRef]
  7. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010). [CrossRef] [PubMed]
  8. S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, and J. Lin, “Synthesis of magnetic, up-ponversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers,” Adv. Funct. Mater.20(7), 1166–1172 (2010). [CrossRef]
  9. X. Guo, W. Song, C. Chen, W. Di, and W. Qin, “Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites,” Phys. Chem. Chem. Phys.15(35), 14681–14688 (2013). [CrossRef] [PubMed]
  10. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011). [CrossRef] [PubMed]
  11. J. Chang, Y. Ning, S. Wu, W. Niu, and S. Zhang, “Effective utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells,” Adv. Funct. Mater.23(47), 5910–5915 (2013). [CrossRef]
  12. V. P. Tuyen, T. Hayakawa, M. Nogami, J.-R. Duclère, and P. Thomas, “Fluorescence line narrowing spectroscopy of Eu3+ in zinc-thallium-tellurite glass,” J. Solid State Chem.183(11), 2714–2719 (2010). [CrossRef]
  13. E. R. Barney, A. C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R. G. Orman, and S. Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett.4(14), 2312–2316 (2013). [CrossRef]
  14. H. M. Oo, H. Mohamed-Kamari, and W. M. Wan-Yusoff, “Optical properties of bismuth tellurite based glass,” Int. J. Mol. Sci.13(12), 4623–4631 (2012). [CrossRef] [PubMed]
  15. D. Linda, J.-R. Duclère, T. Hayakawa, M. Dutreilh-Colas, T. Cardinal, A. Mirgorodsky, A. Kabadou, and P. Thomas, “Optical properties of tellurite glasses elaborated within the TeO2-Tl2O-Ag2O and TeO2-ZnO-Ag2O ternary systems,” J. Alloy. Comp.561(5), 151–160 (2013). [CrossRef]
  16. V. P. Tuyen, T. Hayakawa, M. Nogami, J. -R. Duclère, and P. Thomas, “Photoluminescence properties and Judd-Ofelt analysis of Eu3+ ions in zinc-thallium-tellurite glasses,” J. Non-Crystal Solids, to be submitted (2014).
  17. M. Uchida, T. Hayakawa, T. Suhara, J. -R. Duclère, and P. Thomas, “Dependence of rare-earth concentration on blue up-conversion photoluminescence properties for Tm3+/Yb3+ co-doped TeO2-TlO0.5-ZnO glasses,” J. Appl. Glass Sci. (to be submitted) (2013).
  18. M. Soulis, J.-R. Duclère, T. Hayakawa, V. Couderc, M. Dutreilh-Colas, and P. Thomas, “Second harmonic generation induced by optical poling in new TeO2-Tl2O-ZnO glasses,” Mater. Res. Bull.45(5), 551–557 (2010). [CrossRef]
  19. J. C. J. Bart, A. Bossi, P. Perissinoto, A. Castellan, and N. Giordano, “Some observations on the thermochemistry of telluric acid,” J. Them. Analys.8(2), 313–327 (1975). [CrossRef]
  20. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  21. G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  22. W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron.7(4), 153–159 (1971). [CrossRef]
  23. W. F. Krupke, “Induced-emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron.10(4), 450–457 (1974). [CrossRef]
  24. W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev.139(6A), A2008–A2016 (1965). [CrossRef]
  25. N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett.49(1), 49–53 (1977). [CrossRef]
  26. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968). [CrossRef]
  27. G. H. Jia, C. Y. Tu, J. F. Li, Z. J. Zhu, Y. You, Y. Wang, and B. C. Wu, “Spectroscopy of GdAl3(BO3)4:Tm3+ crystal,” J. Appl. Phys.96(11), 6262–6266 (2004). [CrossRef]
  28. W. Guo, Y. Chen, Y. Lin, Z. Luo, X. Gong, and Y. Huang, “Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys.103(9), 093106 (2008). [CrossRef]
  29. O. A. Blackburn, M. Tropiano, T. J. Sørensen, J. Thom, A. Beeby, L. M. Bushby, D. Parker, L. S. Natrajan, and S. Faulkner, “Luminescence and upconversion from thulium(III) species in solution,” Phys. Chem. Chem. Phys.14(38), 13378–13384 (2012). [CrossRef] [PubMed]
  30. C. Reinhard and H. U. Güdel, “High-resolution optical spectroscopy of Na3[Ln(dpa)3].13H2O with Ln = Er3+, Tm3+, Yb3+,” Inorg. Chem.41(5), 1048–1055 (2002). [CrossRef] [PubMed]
  31. Z. Shen, M. Nygren, and U. Halenius, “Absorption spectra of rare-earth-doped α-sialon ceramics,” J. Mater. Sci. Lett.16(4), 263–266 (1997). [CrossRef]
  32. R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández-Navarro, and D. Munoz-Martin, “Spectroscopic properties of the 1.4 µm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express16(16), 11836–11846 (2008). [CrossRef]
  33. O. Noguera, T. Merle-Méjean, A. P. Mirgorodsky, P. Thomas, and J.-C. Champarnaud-Mesjard, “Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)-(1-x)Te2O glasses: evidence for a phase separation?” J. Phys. Chem. Solids65(5), 981–993 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited