OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 7 — Jul. 1, 2014
  • pp: 1473–1486

High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-Yin Chen, Ann-Kuo Chu, Chie-Tong Kuo, and Hsiang-Chen Wang  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 7, pp. 1473-1486 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoimprint technology was used to synthesize a series of nanostructures with hexagonal holes on a n-GaN baseplate. The hydrothermal growth technique was then used to produce 1.5-μm n-type ZnO nanorods. Radio frequency reactive magnetron sputtering was employed to grow a 50-nm thick layer of cuprous oxide film over the nanorods to form a p-n Cu2O/ZnO core-shell structure. Based on the different imprint widths and intervals obtained, Cu2O/ZnO heterostructure samples A, B, C, and D showed aperture ratios of 0.0627, 0.0392, 0.0832, and 0.0537, respectively. Scanning electron microscopy and atomic force microscopy indicated that a 50-nm Cu2O film coated the ZnO nanorods, forming a core-shell structure. X-ray diffraction and x-ray rocking curve (XRC) analysis showed that the Cu2O lattice structure had polycrystalline characteristics. The lattice planes of Cu2O were (111) and (220), and Sample C exhibited the narrowest XRC half-height full-width value. Therefore, among the samples obtained, Sample C had the optimal material properties. Measurement of the optical properties of the samples demonstrated that their luminous peak did not change with variations in temperature. Sample C also showed optimal optical properties. High-resolution transmission electron microscopy indicated the presence of a midlayer in the Cu2O/ZnO junction that had a direct impact on the Cu2O lattice arrangement on the top, corner, and side faces of the ZnO nanorods. The sample with the largest aperture ratio exhibited the most favorable optical and material properties. The novel structure obtained can potentially be used in solar cell applications.

© 2014 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5293) Materials : Photonic bandgap materials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: May 1, 2014
Revised Manuscript: June 11, 2014
Manuscript Accepted: June 25, 2014
Published: June 30, 2014

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-Yin Chen, Ann-Kuo Chu, Chie-Tong Kuo, and Hsiang-Chen Wang, "High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique," Opt. Mater. Express 4, 1473-1486 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Cui and U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells,” J. Phys. Chem. C114(14), 6408–6412 (2010). [CrossRef]
  2. S. Noda, H. Shima, and H. Akinaga, “Cu2O/ZnO heterojunction solar cells fabricated by magnetron-sputter deposition method films using sintered ceramics targets,” J. Phys. Conf. Ser.433, 012027 (2013). [CrossRef]
  3. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1-3), 383–387 (2001). [CrossRef]
  4. U. Ozgur, D. Hofstetter, and H. Morkoc, “ZnO devices and applications: a review of current status and future prospects,” IEEE Proc. 98, 1255–1268 (2010).
  5. T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97, 010611 (2005).
  6. L. Xiong, S. Huang, X. Yang, M. Q. Qiu, Z. G. Chen, and Y. Yu, “p-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,” Electrochim. Acta56(6), 2735–2739 (2011). [CrossRef]
  7. L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, and Y. Yu, “Aligned 2-D nanosheet Cu2O film: oriented deposition on cu foil and its photo-electrochemical property,” J. Phys. Chem. C112(48), 18916–18922 (2008). [CrossRef]
  8. A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-a review,” Solid-State Electron.29(1), 7–17 (1986). [CrossRef]
  9. Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express21(9), 11448–11456 (2013). [CrossRef] [PubMed]
  10. T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, “Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation,” J. Phys. Chem. C111(21), 7574–7577 (2007). [CrossRef]
  11. M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, “Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation,” J. Phys. Chem. B110(41), 20211–20216 (2006). [CrossRef] [PubMed]
  12. N. Serpone, E. Borgarello, and M. Gratzel, “Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer,” J. Chem. Soc. Chem. Commun.6, 342–344 (1984). [CrossRef]
  13. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  14. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett.88(16), 163502 (2006). [CrossRef]
  15. F. C. Akkari and M. Kanzari, “Optical, structural, and electrical properties of Cu2O thin films,” Phys. Status Solidi A.207(7), 1647–1651 (2010). [CrossRef]
  16. Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, “Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth,” J. Appl. Phys.106, 0235121 (2009).
  17. C. C. Chao, Y. Ohkura, T. Usui, and J. M. Weisse, “Methods for improving efficiencies of cuprous oxide solar cells,”( http://www.stanford.edu/~ccchao1/SolarCells/MATSCI302Cu2OSolar Cells.pdf )
  18. G. Guerguerian, F. Elhordoy, C. J. Pereyra, R. E. Marotti, F. Mart’ın, D. Leinen, J. R. Ramos-Barrad, and E. A. Dalchiele, “ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical Properties,” J. Phys. D Appl. Phys.45(24), 245301 (2012). [CrossRef]
  19. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009). [CrossRef] [PubMed]
  20. F. C. Akkari, M. Kanzari, and B. Rezig, “Preparation and characterization of obliquely deposited copper oxide thin films,” Eur. Phys. J. Appl. Phys.40(1), 49–54 (2007). [CrossRef]
  21. V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins, and E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Phys. Status Solidi A.206(9), 2143–2148 (2009). [CrossRef]
  22. V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci.254(13), 3949–3954 (2008). [CrossRef]
  23. A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films209(1), 92–96 (1992). [CrossRef]
  24. S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation,” J. Appl. Phys.72(8), 3765 (1992). [CrossRef]
  25. M. Fujinaka and A. A. Berezin, “Cuprous oxide–indium–tin oxide thin film photovoltaic cells,” J. Appl. Phys.54(6), 3582 (1983). [CrossRef]
  26. A. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn1−xGaxSe2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett.97, 251911 (2010).
  27. D. DeMeo, S. MacNaughton, S. Sonkusale, and T. E. Vandervelde, “Electrodeposited Copper Oxide and Zinc Oxide Core-Shell Nanowire Photovoltaic Cells, Nanowires - Implementations and Applications, Dr. Abbass Hashim, ed. (InTech, 2011), Chapter 7.
  28. N. Sheikh, N. Afzulpurkar, and M. W. Ashraf, “Robust nanogenerator based on vertically aligned ZnO nanorods using copper substrate,” J. Nanomater.2013, 1–8 (2013). [CrossRef]
  29. P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, and R. S. Patil, “Photoluminescence properties of modified chemical bath deposited copper oxide thin film,” Arch Appl. Sci. Research.3, 288–291 (2011).
  30. Y. S. Chen, C. H. Liao, Y. L. Chueh, C. T. Kuo, and H. C. Wang, “Plan-View Transmission Electron Microscopy Study on Coalescence Overgrowth of GaN Nano-columns by MOCVD,” Opt. Mater. Express3(9), 1459–1467 (2013). [CrossRef]
  31. Y. S. Chen, C. H. Liao, Y. C. Cheng, C. T. Kuo, and H. C. Wang, “Nanostructure study of the coalescence growth of GaN columns with molecular beam epitaxy,” Opt. Mater. Express3(9), 1450–1458 (2013). [CrossRef]
  32. S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nano. Mater.2013, 022402 (2013).
  33. B. M. Fariza, J. Sasano, T. Shinagawa, H. Nakano, S. Watase, and M. Izaki, “Electrochemical growth of (0001)-n-ZnO film on (111)-p-Cu2O film and the characterization of the heterojunction diode,” J. Electrochem. Soc.158(10), D621–D625 (2011). [CrossRef]
  34. L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” J. Appl. Phys.108(3), 033702 (2010). [CrossRef]
  35. S. Kubo, K. Nagase, and M. Nakagawa, “Gold mesh structures with controlled aperture ratios fabricated by reactive-monolayer-assisted thermal nano-imprint lithography,” Chem. Lett.41(10), 1291–1293 (2012). [CrossRef]
  36. S. Xiao, X. R. Su, C. Li, Y. B. Han, G. J. Fang, and Q. Q. Wang, “Linear and nonlinear optical properties of ZnO nanorod arrays,” Chin. Phys. B.17(4), 1291–1297 (2008). [CrossRef]
  37. H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, and Y. Segawa, “Ultrafast exciton dynamics in a ZnO thin film,” Jpn. J. Appl. Phys.48(2), 022402 (2009). [CrossRef]
  38. H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010). [CrossRef]
  39. S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 929278 (2012). [CrossRef]
  40. H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, P. C. Chou, and S. Y. Ting, “Crystallinity improvement of ZnO thin film by hierarchical thermal annealing,” Opt. Mater. Express3(2), 295–306 (2013). [CrossRef]
  41. H. C. Wang, C. H. Liao, Y. L. Chueh, C. C. Lai, L. H. Chen, and R. C. C. Tsiang, “Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy,” Opt. Mater. Express3(2), 237–247 (2013).
  42. P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide,” Opt. Spectrosc.111(5), 776–785 (2011). [CrossRef]
  43. K. Mahmood, S. B. Park, and H. J. Sung, “Enhanced photoluminescence Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C.1(18), 3138–3149 (2013). [CrossRef]
  44. H. Solache-Carranco, G. Juárez-Díaz, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes, and R. Peña-Sierra, “Raman scattering and photoluminescence studies on Cu2O,” (CCE 2008).
  45. L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett.94(11), 113106 (2009). [CrossRef]
  46. P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, “Intense Quantum Confinement Effects in Cu2O Thin Films,” J. Phys. Chem. C115(30), 14839–14843 (2011). [CrossRef]
  47. Y. Wang, S. C. Li, H. Shi, and K. Yu, “Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities,” Nanoscale4(24), 7817–7824 (2012). [CrossRef] [PubMed]
  48. Y. K. Hsu, C. H. Yu, Y. C. Chen, and Y. G. Lin, “Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation,” J. Power Sources242, 541–547 (2013). [CrossRef]
  49. S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, “Polycrystalline n‐ZnO/p‐Cu2O heterojunctions grown by RF‐ magnetron sputtering,” Phys. Status Solidi, C Conf. Crit. Rev.1(4), 1067–1070 (2004). [CrossRef]
  50. Y. Wang, K. Yu, H. H. Yin, C. Q. Song, Z. L. Zhang, S. C. Li, H. Shi, Q. F. Zhang, B. Zhao, Y. F. Zhang, and Z. Q. Zhu, “Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures,” J. Phys. D Appl. Phys.46(17), 175303 (2013). [CrossRef]
  51. S. M. Chou, M. H. Hon, I. C. Leu, and Y.-H. Lee, “Al-doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates,” J. Electrochem. Soc.155(11), 923–928 (2008). [CrossRef]
  52. O. Dulub, M. Batzill, and U. Diebold, “Growth of copper on single crystalline ZnO: surface study of a model catalyst,” Top. Catal.36(1-4), 1–4 (2005). [CrossRef]
  53. J. D. Kwon, S. H. Kwon, T. H. Jung, K. S. Nam, K. B. Chung, D. H. Kim, and J. S. Park, “Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature,” Appl. Surf. Sci.285, 373–379 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited