OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1747–1755

Simultaneous light emissions from erbium-thulium silicates and oxides on silicon in the second and third telecommunications bands

Maria Anagnosti, Hiroo Omi, and Takehiko Tawara  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 9, pp. 1747-1755 (2014)
http://dx.doi.org/10.1364/OME.4.001747


View Full Text Article

Enhanced HTML    Acrobat PDF (1407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate simultaneous light emissions in O (1260-1360 nm), S (1460-1530 nm), and C (1530-1565 nm) telecommunications bands from films composed of mixtures of polycrystalline Er2xTm2-2xSiO5 and Er2xTm2-2xSi2O7 and of polycrystalline Er2xTm2-2xO3 grown by radio frequency (rf) magnetron sputtering using polycrystalline Tm2O3, Er2O3 and SiO2 targets on Si(100) substrates. Photons are emitted in the O and S + C bands when the samples are optically excited at 532 nm and in the S and C bands when excited at 785 nm. The simultaneous dual-wavelength light emissions are discussed in terms of energy transfers between Er3+ and Tm3+ ions in the polycrystalline Er-Tm compounds.

© 2014 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(140.3500) Lasers and laser optics : Lasers, erbium
(160.4670) Materials : Optical materials
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer

ToC Category:
Rare-Earth-Doped Materials

History
Original Manuscript: June 6, 2014
Revised Manuscript: July 23, 2014
Manuscript Accepted: July 27, 2014
Published: August 4, 2014

Citation
Maria Anagnosti, Hiroo Omi, and Takehiko Tawara, "Simultaneous light emissions from erbium-thulium silicates and oxides on silicon in the second and third telecommunications bands," Opt. Mater. Express 4, 1747-1755 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-9-1747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Tian, R. Xu, L. Hu, J. Zhang, “2.7μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800nm and 980nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012). [CrossRef]
  2. W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, M. Kokta, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51(16), 1218 (1987). [CrossRef]
  3. W. Q. Shi, M. Bass, M. Birnbaum, “Investigation of the interactions between dissimilar ions in (Er, Nd):Y3Al5O12,” J. Opt. Soc. Am. B 6(1), 23 (1989). [CrossRef]
  4. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A Short Dual-wavelength DBR Phosphate Fiber Laser,” in CLEO - Laser Applications to Photonic Applications, CTuI3 (2011).
  5. G. J. McCarthy, J. J. Rhyne, and H. B. Silber, eds., The Rare Earths in Modern Science and Technology (Springer US 1980).
  6. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010). [CrossRef]
  7. K. D. Polder, A. Harrison, L. E. Eubanks, S. Bruce, “1,927-nm fractional thulium fiber laser for the treatment of nonfacial photodamage: a pilot study,” Dermatol. Surg. 37(3), 342–348 (2011). [CrossRef] [PubMed]
  8. A. I. Metelitsa, T. S. Alster, “Fractionated laser skin resurfacing treatment complications: a review,” Dermatol. Surg. 36(3), 299–306 (2010). [CrossRef] [PubMed]
  9. A. J. McGrath, J. Munch, G. Smith, P. Veitch, “Injection-Seeded, Single-Frequency, Q-Switched Erbium:Glass Laser for Remote Sensing,” Appl. Opt. 37(24), 5706–5709 (1998). [CrossRef] [PubMed]
  10. U. Panne, “Laser remote sensing,” TrAC Trends. Anal. Chem. 17(8–9), 491–500 (1998).
  11. Y. Bai, J. Yu, M. Petros, P. Petzar, B. Trieu, H. Lee, U. Singh, V. Leyva, V. Shkunov, D. Rockwell, A. Betin, and J. Wang, “Injection Seeded/Phase-Conjugated 2-micron Laser System,” Nasa Technical Reports (2007).
  12. Y. J. Ding, Q. Hu, M. Koch, C. E. Stutz, “Introduction to the Special Issue on THz Materials, Devices, and Applications,” IEEE J. Sel. Top. Quantum Electron. 14(2), 257–259 (2008). [CrossRef]
  13. L. Agazzi, J. D. B. Bradley, F. Ay, A. Kahn, H. Scheife, G. Huber, R. M. de Ridder, K. Worhoff, and M. Pollnau, “Energy migration governs upconversion losses in Er3+-doped integrated amplifiers,” in CLEO/Europe - EQEC - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, (2009).]
  14. P. Nair, B. M. Sivaram, and J. P. Raina, “Effect of upconversion losses on the performance of high concentration Erbium doped fiber amplifiers,” in Technical Digest. CLEO/Pacific Rim. The Pacific Rim Conference on Lasers and Electro-Optics, 303 (1995). [CrossRef]
  15. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997). [CrossRef] [PubMed]
  16. R. Balda, J. Fernández, J. M. Fernández-Navarro, “Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses,” Opt. Express 17(11), 8781–8788 (2009). [CrossRef] [PubMed]
  17. H. Jeong, K. Oh, S. R. Han, T. F. Morse, “Characterization of broadband amplified spontaneous emission from an Er3+–Tm3+ co-doped silica fiber,” Chem. Phys. Lett. 367(3–4), 507–511 (2003). [CrossRef]
  18. T. Miyakawa, D. Dexter, “Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids,” Phys. Rev. B 1(7), 2961–2969 (1970). [CrossRef]
  19. J. B. Gruber, G. W. Burdick, S. Chandra, D. K. Sardar, “Analyses of the ultraviolet spectra of Er 3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010). [CrossRef]
  20. H. Omi, Y. Abe, M. Anagnosti, T. Tawara, “Mixture formation of ErxYb2-xSi2O7 and ErxYb2-xO3 on Si for broadening the C-band in an optical amplifier,” AIP Adv. 3(4), 042107 (2013). [CrossRef]
  21. C. Tosello, M. Montagna, M. Mattarelli, M. Ferrari, S. Chaussedent, A. Monteil, V. K. Tikhomirov, A. B. Seddon, “Er3+- and Tm3+-containing ultra-transparent oxyfluoride-based glass ceramics for wavelength division multiplexing optical amplifiers,” Glass Phys. Chem. 31(3), 377–381 (2005). [CrossRef]
  22. E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. César, L. C. Barbosa, “Er3+–Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band,” Opt. Fiber Technol. 12(2), 185–195 (2006). [CrossRef]
  23. L. Huang, A. Jha, S. Shen, X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004). [CrossRef] [PubMed]
  24. S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, A. K. Kar, “Tellurite Glasses for Broadband Amplifiers and Integrated Optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002). [CrossRef]
  25. V. A. G. Rivera, M. El-Amraoui, Y. Ledemi, Y. Messaddeq, E. Marega., “Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses,” J. Lumin. 145, 787–792 (2014). [CrossRef]
  26. T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013). [CrossRef]
  27. H. Isshiki, T. Kimura, “Toward small size waveguide amplifiers based on erbium silicate for silicon photonics,” IEICE Trans. Electron. E91–C(2), 138–144 (2008). [CrossRef]
  28. T. Chanelière, J. Ruggiero, J.-L. Le Gouët, W. Tittel, J.-H. Mun, A. Jouini, A. Yoshikawa, G. Boulon, Y. Du, P. Goldner, F. Beaudoux, J. Vincent, E. Antic-Fidancev, O. Guillot-Noël, “Tm3+:Y2O3 investigated for a quantum light storage application,” Phys. Rev. B 77(24), 245127 (2008). [CrossRef]
  29. Q. Yi, T. Tsuboi, S. Zhou, Y. Nakai, H. Lin, H. Teng, “Investigation of emission properties of Tm3+:Y2O3 transparent ceramic,” Chin. Opt. Lett. 10(9), 091602 (2012). [CrossRef]
  30. Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater. (Amst) 5(1–2), 127–136 (1996). [CrossRef]
  31. J. H. Mun, A. Jouini, A. Novoselov, Y. Guyot, A. Yoshikawa, H. Ohta, H. Shibata, Y. Waseda, G. Boulon, T. Fukuda, “Growth and characterization of Tm-doped Y2O3 single crystals,” Opt. Mater. (Amst) 29(11), 1390–1393 (2007). [CrossRef]
  32. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, M. J. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,” Phys. Rev. B Condens. Matter 39(1), 80–90 (1989). [CrossRef] [PubMed]
  33. H. Xiong, G. Tang, L. Luo, W. Chen, “50GeSe2-25In2Se3-25CsI glass doped with Tm3+, Tm3+/Ho3+ and Tm3+/Er3+ for amplifiers working at 1.22 μm,” J. Rare Earths 29(10), 920–923 (2011). [CrossRef]
  34. J. Caird, L. DeShazer, J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+in YAG and YAlO3,” IEEE J. Quantum Electron. 11(11), 874–881 (1975). [CrossRef]
  35. J. L. Vossen, “Control of film properties by rf-sputtering techniques,” J. Vac. Sci. Technol. 8(5), 12 (1971). [CrossRef]
  36. B. Padalia, J. Gimzewski, S. Affrossman, W. Lang, L. Watson, D. Fabian, “The reactions of oxygen and water with the rare-earth metals terbium to lutetium studied by x-ray photoelectron spectroscopy,” Surf. Sci. 61(2), 468–482 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited