OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1775–1786

Fast tuning of Fano resonance in metal/phase-change materials/metal metamaterials

Tun Cao, Chenwei Wei, Robert E. Simpson, Lei Zhang, and Martin J. Cryan  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 9, pp. 1775-1786 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1857 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose fast tuning of a Fano resonance (FR) in a three dimensional metamaterial (MM). The MM consists of an elliptical nanohole array (ENA) embedded through a metal/ phase-change material (PCM)/metal multilayer. The results show that the interference between the electric and magnetic resonances can be significantly enhanced when the elliptical nanoholes occupy the sites of a rectangular lattice, thus providing a FR with a higher value quality factor (Q) compared to the ENA with a square lattice. By switching the PCM (Ge2Sb2Te5) between its amorphous and crystalline states, the FR peak can be red-shifted by up to 42%. The FR can be tuned with a ultra low energy mid-infrared laser pulse of 0.38 ns duration and an intensity of 3.2μW/μm2.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 9, 2014
Revised Manuscript: July 29, 2014
Manuscript Accepted: July 31, 2014
Published: August 6, 2014

Tun Cao, Chenwei Wei, Robert E. Simpson, Lei Zhang, and Martin J. Cryan, "Fast tuning of Fano resonance in metal/phase-change materials/metal metamaterials," Opt. Mater. Express 4, 1775-1786 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  2. W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85(2), 025806 (2012). [CrossRef]
  3. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  5. S. Liu, Z. Yang, R. Liu, and X. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011). [CrossRef]
  6. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  7. J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced raman scattering,” Acc. Chem. Res.42(6), 734–742 (2009). [CrossRef] [PubMed]
  8. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012). [CrossRef] [PubMed]
  9. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum fano resonance,” Phys. Rev. Lett.106(10), 107403 (2011). [CrossRef] [PubMed]
  10. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  11. O. Peña-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernández, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414 (2011). [CrossRef]
  12. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009). [CrossRef] [PubMed]
  13. D. J. Wu, S. M. Jiang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502 (2012). [CrossRef] [PubMed]
  14. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett.10(11), 4680–4685 (2010). [CrossRef] [PubMed]
  15. M. R. Shcherbako, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, and A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B82(19), 193402 (2010). [CrossRef]
  16. H. L. Liu, X. J. Wu, B. Li, C. X. Xu, G. B. Zhang, and L. J. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett.100(15), 153114 (2012). [CrossRef]
  17. O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale5(1), 209–216 (2012). [CrossRef] [PubMed]
  18. B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012). [CrossRef]
  19. N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012). [CrossRef]
  20. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012). [CrossRef] [PubMed]
  21. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011). [CrossRef] [PubMed]
  22. X. Xiao, J. B. Wu, F. Miyamaru, M. Y. Zhang, S. B. Li, M. W. Takeda, W. J. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett.98(1), 011911 (2011). [CrossRef]
  23. P. C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99(22), 221106 (2011). [CrossRef]
  24. Y. H. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express18(20), 20912–20917 (2010). [CrossRef] [PubMed]
  25. R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H. Chen, “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophoto.1, 117–123 (2011).
  26. J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mater. Express2(1), 31–37 (2012). [CrossRef]
  27. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011). [CrossRef] [PubMed]
  28. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011). [CrossRef] [PubMed]
  29. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010). [CrossRef]
  30. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett.13(3), 1111–1117 (2013). [CrossRef] [PubMed]
  31. X. Y. Hu, Y. B. Zhang, Y. L. Fu, H. Yang, and Q. H. Gong, “Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials,” Adv. Mater.23(37), 4295–4300 (2011). [CrossRef] [PubMed]
  32. Y. Zhu, X. Hu, Y. Huang, H. Yang, and Q. Gong, “Fast and low-power all-optical tunable fano resonance in plasmonic microstructures,” Adv. Optical Mater.1(1), 61–67 (2013). [CrossRef]
  33. F. Zhang, X. Hu, Y. Zhu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials,” Appl. Phys. Lett.102(18), 181109 (2013). [CrossRef]
  34. T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett.103(24), 241101 (2013). [CrossRef]
  35. T. Cao, C. Wei, R. Simpson, L. Zhang, and M. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express3(8), 1101–1110 (2013). [CrossRef]
  36. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012). [CrossRef] [PubMed]
  37. T. Cao, R. Simpson, and M. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013). [CrossRef]
  38. T. Cao, L. Zhang, R. Simpson, and M. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013). [CrossRef]
  39. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity,” Sci Rep4, 4463 (2014). [CrossRef] [PubMed]
  40. J. Q. Wang, C. Z. Fan, J. N. He, P. Ding, E. J. Liang, and Q. Z. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express21(2), 2236–2244 (2013). [CrossRef] [PubMed]
  41. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008). [CrossRef] [PubMed]
  42. A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett.13(8), 3470–3475 (2013). [CrossRef] [PubMed]
  43. J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys.104(4), 043523 (2008). [CrossRef]
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  45. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012). [CrossRef] [PubMed]
  46. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011). [CrossRef] [PubMed]
  47. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  48. Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited