OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1866–1875

Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics

M. Nur-E Alam, Mikhail Vasiliev, and Kamal Alameh  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 9, pp. 1866-1875 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large Faraday rotations, when achieved simultaneously with low optical losses, lead to obtaining high magneto-optic (MO) figures of merit in bismuth-substituted garnet-type material systems. Demonstrating high MO figures of merit typically requires the synthesis of garnet materials with high bismuth substitution levels (close to 3 Bi atoms per stoichiometric formula unit). In our previous experiments, garnet layers sputtered from a target of nominal stoichiometry Bi3Fe5O12 in pure argon atmosphere showed negligible amounts of specific Faraday rotation after annealing, in contrast with results reported typically for pulsed laser deposition of this material in plasma chemistries containing oxygen. We co-sputter Bi3Fe5O12 together with Dy2O3 in pure argon plasma, and obtain the garnet-type composite thin films on glass substrates possessing a specific Faraday rotation in garnet-Dy2O3 composite films in excess of 14°/µm at 532 nm and a coercive force as low as 100 Oe.

© 2014 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.3820) Materials : Magneto-optical materials
(310.3840) Thin films : Materials and process characterization

ToC Category:
Magneto-optical Materials

Original Manuscript: July 17, 2014
Revised Manuscript: August 9, 2014
Manuscript Accepted: August 9, 2014
Published: August 14, 2014

M. Nur-E Alam, Mikhail Vasiliev, and Kamal Alameh, "Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics," Opt. Mater. Express 4, 1866-1875 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Buhrer, “Faraday rotation and dichroism of bismuth calcium vanadium iron garnet,” J. Appl. Phys.40(11), 4500 (1969). [CrossRef]
  2. A. K. Zvezdin and V. A. Kotov, in Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, 1997).
  3. G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of Bismuth substituted iron garnets,” IEEE Trans. Magn.12(4), 292–311 (1976). [CrossRef]
  4. M. Vasiliev, M. N.-E. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express17(22), 19519–19535 (2009).
  5. T. Okuda, T. Katayama, H. Kobayashi, N. Kobayashi, K. Satoh, and H. Yamamoto, “Magnetic properties of Bi3Fe5O12 garnet,” J. Appl. Phys.67(9), 4944–4946 (1990). [CrossRef]
  6. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. N.-E. Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat Commun4, 2128 (2013). [CrossRef] [PubMed]
  7. M. Pohl, L. E. Kreilkamp, V. I. Belotelov, I. A. Akimov, A. N. Kalish, N. E. Khokhlov, V. J. Yallapragada, A. V. Gopal, M. N-E. Alam, M. Vasiliev, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys.15(7), 075024 (2013).
  8. M. Vasiliev, V. A. Kotov, K. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44(3), 323–328 (2008). [CrossRef]
  9. M. N-E. Alam, M. Vasiliev, K. Alameh, and C. Valli, “Magneto-optical visualisation for high-resolution forensic data recovery using advanced thin film nano-materials,” in Proc. International Cyber Resilience Conference, Perth, Australia (2010).
  10. M. Vasiliev, K. E. Alameh, V. I. Belotelov, V. Kotov, and A. K. Zvezdin, “Magnetic photonic crystals: 1-D Optimization and Applications for the Integrated Optics Devices,” IEEE/OSA. J. Lightwave Technol.24(5), 2156–2162 (2006). [CrossRef]
  11. M. N-E. Alam, M. Vasiliev, and K. Alameh, “Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron.41(9), 661–669 (2009).
  12. N. Adachi, V. P. Denysenkov, S. I. Khartsev, A. M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12 (001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys.88(1), 2734–2739 (2000). [CrossRef]
  13. M. N-E. Alam, M. Vasiliev, and K. Alameh, “New Class of Garnet Nanocomposites for Use in Magnetic Photonic Crystals Prepared by RF Magnetron Co-sputtering,” In Proc. Int. Conf. on High-Capacity Optical Networks and Enabling Technologies (HONET 2012), Istanbul, Turkey (2012).
  14. M. Deb, E. Popova, A. Fouchet, and N. Keller, “Magneto-optical Faraday spectroscopy of completely bismuth-substituted Bi3Fe5O12 garnet thin films,” J. Phys. D Appl. Phys.45(45), 455001 (2012). [CrossRef]
  15. S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn.43(9), 3656–3660 (2007). [CrossRef]
  16. A. H. Eschenfelder, Magnetic Bubble Technology (Springer-Verlag, 1980).
  17. M. Vasiliev, M. N-E. Alam, P. Perumal, V. A. Kotov, K. Alameh, Y. T. Lee, and Y. P. Lee, “Annealing behavior and crystal structure of RF-sputtered Bi-substituted dysprosium iron garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys.44, 075002 (2011).
  18. M. N-E. Alam, M. Vasiliev, K. Alameh, and V. A. Kotov, “Garnet multilayer thin film structure with magnetostatically-altered and improved magnetic properties prepared by RF magnetron sputtering,” In Proc. Int. Conf. on High-capacity Optical Networks and Enabling Technologies Conference (HONET 2011), pp- 177–181, Riadh, Saudi Arabia (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited