OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 1 — May. 1, 2011
  • pp: 57–66

Second harmonic generation imaging with a kHz amplifier [Invited]

Mark D. Peterson, Patrick L. Hayes, Imee Su Martinez, Laura C. Cass, Jennifer L. Achtyl, Emily A. Weiss, and Franz M. Geiger  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 1, pp. 57-66 (2011)
http://dx.doi.org/10.1364/OME.1.000057


View Full Text Article

Enhanced HTML    Acrobat PDF (1963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear optical imaging is a powerful method for observing bulk and interfacial phenomena in time and space. Here, we present a step-by-step description of how to carry out second harmonic generation imaging with a kHz amplifier laser system and demonstrate its applicability for SHG microscopy studies of highly size-resolved colloidal CdSe quantum dots having radii of 1-2 nm deposited on glass slides. It is found that not all quantum dots are SHG active, which suggests that environmental effects and particle distributions are important for SHG activity of quantum dots.

© 2011 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.0140) Lasers and laser optics : Lasers and laser optics
(180.0180) Microscopy : Microscopy
(190.0190) Nonlinear optics : Nonlinear optics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Chiral Optical Materials

History
Original Manuscript: February 23, 2011
Revised Manuscript: March 7, 2011
Manuscript Accepted: March 7, 2011
Published: April 22, 2011

Virtual Issues
Chiral Optical Materials (2011) Optical Materials Express

Citation
Mark D. Peterson, Patrick L. Hayes, Imee Su Martinez, Laura C. Cass, Jennifer L. Achtyl, Emily A. Weiss, and Franz M. Geiger, "Second harmonic generation imaging with a kHz amplifier [Invited]," Opt. Mater. Express 1, 57-66 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-1-57


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  2. O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325(3), 343–355 (1995). [CrossRef]
  3. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104(1), 1–5 (2000). [CrossRef]
  4. B. S. Santos, G. A. Pereira, D. V. Petrov, and C. D. Donega, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178(1-3), 187–192 (2000). [CrossRef]
  5. M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5(24), 2835–2840 (2009). [CrossRef] [PubMed]
  6. E. Shaviv and U. Banin, “Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles,” ACS Nano 4(3), 1529–1538 (2010). [CrossRef] [PubMed]
  7. M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005). [CrossRef] [PubMed]
  8. N. Ji, K. Zhang, H. Yang, and Y.-R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006). [CrossRef] [PubMed]
  9. M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 786–790 (2006). [CrossRef] [PubMed]
  10. R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002). [CrossRef]
  11. K. Cimatu and S. Baldelli, “Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid-liquid interface,” J. Am. Chem. Soc. 130(25), 8030–8037 (2008). [CrossRef] [PubMed]
  12. R. D. Wampler, D. J. Kissick, C. J. Dehen, E. J. Gualtieri, J. L. Grey, H.-F. Wang, D. H. Thompson, J.-X. Cheng, and G. J. Simpson, “Selective detection of protein crystals by second harmonic microscopy,” J. Am. Chem. Soc. 130(43), 14076–14077 (2008). [CrossRef] [PubMed]
  13. P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals,” Chem. Mater. 12(11), 3296–3300 (2000). [CrossRef]
  14. A. C. Millard, L. Jin, J. P. Wuskell, D. M. Boudreau, A. Lewis, and L. M. Loew, “Wavelength- and time-dependence of potentiometric non-linear optical signals from styryl dyes,” J. Membr. Biol. 208(2), 103–111 (2005). [CrossRef] [PubMed]
  15. R. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005). [CrossRef] [PubMed]
  16. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007). [CrossRef] [PubMed]
  17. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993). [CrossRef]
  18. T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, “Second-order nonlinear optical properties of highly symmetric chiral thin films,” Langmuir 17(16), 4685–4687 (2001). [CrossRef]
  19. J. M. Hicks, Chirality: Physical Chemistry, ACS Symposium Series 810 (Oxford University Press, 2002).
  20. B. J. Burke, A. J. Moad, M. A. Polizzi, and G. J. Simpson, “Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation,” J. Am. Chem. Soc. 125(30), 9111–9115 (2003). [CrossRef] [PubMed]
  21. G. J. Simpson, “Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics,” ChemPhysChem 5(9), 1301–1310 (2004). [CrossRef] [PubMed]
  22. N. Ji and Y. R. Shen, “Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems,” J. Am. Chem. Soc. 126(46), 15008–15009 (2004). [CrossRef] [PubMed]
  23. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1984).
  24. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16(18), 792–794 (1966). [CrossRef]
  25. M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000). [CrossRef] [PubMed]
  26. J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. 138(6A), A1599–A1606 (1965). [CrossRef]
  27. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 1957).
  28. A. J. Moad and G. J. Simpson, “Self-consistent approach for simplifying the molecular interpretation of nonlinear optical and multiphoton phenomena,” J. Phys. Chem. A 109(7), 1316–1323 (2005). [CrossRef] [PubMed]
  29. Y. R. Shen, “Nonlinear optical spectroscopy of molecular chirality,” in Trends and Perspectives in Modern Computational Science, G. Maroulis and T. Simos, eds. (Brill Academic Pub., 2006), pp. 461–471.
  30. V. J. Hall and G. J. Simpson, “Direct observation of transient Ostwald crystallization ordering from racemic serine solutions,” J. Am. Chem. Soc. 132(39), 13598–13599 (2010). [CrossRef] [PubMed]
  31. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  32. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009). [CrossRef] [PubMed]
  33. N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009). [CrossRef]
  34. A. J. Morris-Cohen, M. D. Donakowski, K. E. Knowles, and E. A. Weiss, “The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide,” J. Phys. Chem. C 114(2), 897–906 (2010). [CrossRef]
  35. A. J. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss, “Organic surfactant-controlled composition of the surfaces of CdSe quantum dots,” J. Phys. Chem. Lett. 1(7), 1078–1081 (2010). [CrossRef]
  36. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124(9), 2049–2055 (2002). [CrossRef] [PubMed]
  37. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15(14), 2854–2860 (2003). [CrossRef]
  38. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 2003).
  39. M. L. Frederick, J. L. Achtyl, K. E. Knowles, E. A. Weiss, and F. M. Geiger, “Surface amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopy” (submitted [2010]).
  40. C. J. Murphy, A. M. Gole, S. E. Hunyadi, J. W. Stone, P. N. Sisco, A. Alkilany, B. E. Kinard, and P. Hankins, “Chemical sensing and imaging with metallic nanorods,” Chem. Commun. (Camb.) 5(5), 544–557 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited