OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 138–150

Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism [Invited]

Sathravada Balaji, Atul D. Sontakke, Ranjan Sen, and Annapurna Kalyandurg  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 138-150 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ~2.0μm emission characteristics of Ho3+ both by direct excitation and through Yb3+ sensitization in barium-tellurite glass are reported. The radiative properties of active ions have been evaluated by applying Judd-Ofelt theory on the measured absorption spectrum. A significant enhancement of Ho3+ emission (2.0μm) observed with 12 fold decrease of Yb3+ emission (1008nm) in co-doped sample entrenched the efficient energy transfer from Yb3+:2F5/2→Ho3+:5I6. The host phonon assistance in the energy transfer process has been conferred by using Dexter model. Comparatively better emission properties (Arad, Δλeff, σem) reveal that, the present material could be promising for laser emission at ~2.0μm.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Laser Materials

Original Manuscript: March 7, 2011
Revised Manuscript: April 5, 2011
Manuscript Accepted: April 5, 2011
Published: April 29, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express

Sathravada Balaji, Atul D. Sontakke, Ranjan Sen, and Annapurna Kalyandurg, "Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism," Opt. Mater. Express 1, 138-150 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007). [CrossRef]
  2. P. Crump, S Patterson, W Dong, M Grimshaw, J Wang, S Zhang, S Elim, M Bougher, J. Patterson, S Das, D Wise, T Matson, D Balsley, J Bell, M DeVito, and R Martinsen, “Room temperature high power mid-IR diode laser bars for atmospheric sensing applications,” Proc. SPIE 6552(655214), 1–6 (2007).
  3. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2-4), 61–109 (2009). [CrossRef]
  4. B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 µm,” Laser Phys. Lett. 7(3), 177–193 (2010). [CrossRef]
  5. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 21 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991). [CrossRef] [PubMed]
  6. L. J. Johson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3 + in CaWO4,” Proc IAE 50, 87–90 (1962).
  7. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm[sup 3+] and Ho[sup 3+] in YLiF[sub 4] and LuLiF[sub 4],” J. Appl. Phys. 95(7), 3255–3271 (2004). [CrossRef]
  8. L. V. Klimov, I. A. Shcherbakov and V. B. Tsvetkov, “Room Temperature 2-µm Laser Action of Ho3+-Doped YSGG, GSAG, YSAG and YAG Crystals,” OSA proc. Adv. Solid State Lasers 15, 419–423 (1993).
  9. Th. Rothacher, W. Lüthy, and H. P. Weber, “Spectral properties of a Tm:Ho:YAG laser in active mirror configuration,” Appl. Phys. B 66(5), 543–546 (1998). [CrossRef]
  10. Th. Rothacher, W. Lüthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155(1-3), 68–72 (1998). [CrossRef]
  11. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008). [CrossRef] [PubMed]
  12. Lihui Huang, Shaoxiong Shen, and Animesh Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glass”, J. Non-Cryst. Solids 345&346, 349–353 (2004).
  13. Y. Dwivedi, A. Roy, and S. B. Rai, “Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass,” J. Appl. Phys. 104(043509), 1–4 (2008).
  14. R. Debnath, A. Ghosh, and S. Balaji, “Synthesis and luminescence properties of an (Er2Te4O11) nanocrystals dispersed highly efficient upconverting lead free tellurite glass,” Chem. Phys. Lett. 474(4-6), 331–335 (2009). [CrossRef]
  15. K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Midinfrared luminescence and energy transfer characteristics of Ho3+/Yb3+ codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33(1), 31–35 (2010). [CrossRef]
  16. A. Ghosh and R. Debnath, “Judd-Ofelt analysis of Er3+ activated lead free fluoro-tellurite glass,” Opt. Mater. 31(4), 604–608 (2009). [CrossRef]
  17. N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationship for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978). [CrossRef]
  18. K. Annapurna, R. Chakrabarti, and S. Buddhudu,“Absorption and emission spectral analysis of Pr3+: tellurite glasses,” J. Mater. Sci. 42(16), 6755–6761 (2007). [CrossRef]
  19. D. Tatar, G. Özen, F. B. Erim, and M. L. Övecoğlu, “Raman characterization and structural properties of the binary TeO2-WO3, TeO2-CdF2 and ternary TeO2-CdF2-WO3 glasses,” J. Raman. Spectrosc. 41, 797–807 (2010).
  20. J. Lin, W. Huang, Z. Sun, C. S. Ray, and D. E. Day, “Structure and non-linear optical performance of TeO2-Nb2O5-ZnO glasses,” J. Non-Cryst. Solids 336(3), 189–194 (2004). [CrossRef]
  21. A. A. Kaminskii, Laser Crystals: Their Physics and Properties, Second Edition, (Springer-Verlag, 1990), pp. 156.
  22. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968). [CrossRef]
  23. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999). [CrossRef]
  24. D. Yeh, R. Petrin, W. Sibley, V. Madigou, J. Adam, and M. Suscavage, “Energy transfer between Er3+ and Tm3+ ions in barium fluoride – thorium fluoride glass,” Phys. Rev. B 39(1), 80–90 (1989). [CrossRef]
  25. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000). [CrossRef]
  26. Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996). [CrossRef]
  27. G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. M. J. Van Veggel, “Unexpected Sensitization Efficiency of the Near-Infrared Nd3+, Er3+ and Yb3+ Emission by Fluorescein Compared to Eosin and Erythrosin,” J. Phys. Chem. A 107(14), 2483–2491 (2003). [CrossRef]
  28. D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+ → Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68,035118 (2003).
  29. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010). [CrossRef]
  30. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+ -doped KPb2Cl5,” J. Opt. Soc. Am. B 18(3), 264–276 (2001). [CrossRef]
  31. K. L. Nash, R. C. Dennis, N. J. Ray, J. B. Gruber, and D. K. Sardar, “Absorption intensities, emission cross sections and crystal field analysis of selected intermanifold transitions of Ho3+ in Ho3+:Y2O3 nanocrystals,” J. Appl. Phys. 106(063117), 1–8 (2009).
  32. P. R. Watekar, S. Ju, and W.-T. Han, “Optical properties of Ho-doped alumino-germano-silica glass optical fiber,” J. Non-Cryst. Solids 354(14), 1453–1459 (2008). [CrossRef]
  33. G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+,” J. Fluoresc. 17(3), 301–307 (2007). [CrossRef] [PubMed]
  34. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995). [CrossRef]
  35. M. Wang, G. Wang, L. Yi, S. Li, L. Hu, and J. Zhang, “2-µm emission performance of Tm3+-Ho3+ co-doped tellurite glass,” Chin. Opt. Lett. 8(1), 78–81 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited