OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 151–157

Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 2, pp. 151-157 (2011)
http://dx.doi.org/10.1364/OME.1.000151


View Full Text Article

Enhanced HTML    Acrobat PDF (1583 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-area split ring resonators (SRRs) array is fabricated by laser micro-lens array (MLA) lithography on flexible Polyethylene Naphthalate (PEN) substrates. Multi-layer metamaterials are formed by stacking and bonding several layers of the laser fabricated metamaterials together. The resonance of the multi-layer metamaterials is enhanced significantly as compared to the single-layer metamaterials. The roll-off value of the half-wavelength resonant dip, which reflects the strength of resonance, increases significantly from 4.9 to 11.2 as the layer number increases from 1 to 5. A logarithm relationship between the amplitude of the resonant dip and the layer number is also studied, which indicates a flexible method to tune the strength of resonance by changing the layer number. The multi-layer metamaterials with the enhanced resonance can be used to make narrow band terahertz filters.

© 2011 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Metamaterials

History
Original Manuscript: March 9, 2011
Revised Manuscript: April 15, 2011
Manuscript Accepted: April 15, 2011
Published: April 29, 2011

Citation
Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, "Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates," Opt. Mater. Express 1, 151-157 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-2-151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  5. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  6. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010). [CrossRef]
  7. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterials with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009). [CrossRef]
  8. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010). [CrossRef] [PubMed]
  9. S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010). [CrossRef]
  10. C. M. Bingham, H. Tao, X. L. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008). [CrossRef] [PubMed]
  11. E. Ozbay, Z. Li, and K. Aydin, “Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index,” J. Phys. Condens. Matter 20(30), 304216 (2008). [CrossRef]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  13. X. G. Peralta, E. I. Smirnova, A. K. Azad, H. T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009). [CrossRef] [PubMed]
  14. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  15. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008). [CrossRef]
  16. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011). [CrossRef] [PubMed]
  17. R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008). [CrossRef] [PubMed]
  18. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010). [CrossRef]
  19. R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010). [CrossRef]
  20. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94(2), 021116 (2009). [CrossRef]
  21. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008). [CrossRef] [PubMed]
  22. R. F. Service, “Materials science. Next wave of metamaterials hopes to fuel the revolution,” Science 327(5962), 138–139 (2010). [CrossRef] [PubMed]
  23. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  24. D. B. Burckel, J. R. Wendt, G. A. T. Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010). [CrossRef]
  25. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010). [CrossRef]
  26. J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009). [CrossRef] [PubMed]
  27. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006). [CrossRef]
  28. Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010). [CrossRef]
  29. C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010). [CrossRef] [PubMed]
  30. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43(1), 1–18 (2008). [CrossRef]
  31. A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31(5), 634–636 (2006). [CrossRef] [PubMed]
  32. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010). [CrossRef] [PubMed]
  33. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited