OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 158–163

Real-time near-field evidence of optical blinking in the photoluminescence of InGaN by scanning near-field optical microscope

Kotaro Oikawa, Christian Feldmeier, Ulrich Theodor Schwarz, Yoichi Kawakami, and Ruggero Micheletto  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 2, pp. 158-163 (2011)
http://dx.doi.org/10.1364/OME.1.000158


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

InGaN/GaN devices are currently used for many applications, for example, full color display, white (RGB) illumination systems and for the realization of shorter wavelength emitters for optical data storage. We previously reported a blinking phenomenon in the photo-luminescence of InGaN device ready single quantum well materials. In this study we observe in high resolution this optical instability with a near-field nano-probe. The phenomenon appears only in local confined domains and does not seem to behave as a bistable state process like reported on quantum dots generated photo-luminescence. We investigated by a modified scanning near-field optical microscope (SNOM) and studied the time/intensity profile of the optical signal with a resolution in the range of 100nm. The dynamics of the blinking was time-resolved and its behaviour studied with Fourier analysis. Despite the intensity oscillations were found to have chaotic component (autocorrelation coefficient is about 0.63), the optical oscillations appear to include regular characteristics. Fourier analysis of the light intensity from confined domains exhibit peaks in the range of 4–5 s. The emergence of these intriguingly slow and partially regular dynamics should shed light on the inner mechanism that are involved in the fundamental processes of optical emission in these devices.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(190.3100) Nonlinear optics : Instabilities and chaos
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5230) Optoelectronics : Photoluminescence
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Semiconductors

History
Original Manuscript: February 11, 2011
Revised Manuscript: April 1, 2011
Manuscript Accepted: April 1, 2011
Published: April 29, 2011

Citation
Kotaro Oikawa, Christian Feldmeier, Ulrich Theodor Schwarz, Yoichi Kawakami, and Ruggero Micheletto, "Real-time near-field evidence of optical blinking in the photoluminescence of InGaN by scanning near-field optical microscope," Opt. Mater. Express 1, 158-163 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-2-158


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1–xN/GaN multiple quantum wells,” Phys. Rev. B 82, 085305 (2010). [CrossRef]
  2. R. Micheletto, M. Abiko, A. Kaneta, Y. Kawakami, Y. Narukawa, and T. Mukai “Observation of optical instabilities in the photoluminescence of InGaN single quantum well,” App. Phys. Lett. 88, 061118 (2006). [CrossRef]
  3. R. Micheletto, M. Allegrini, and Y. Kawakami, “Near-field evidence of local polarized emission centers in InGaN/GaN materials,” App. Phys. Lett. 95, 211904 (2009). [CrossRef]
  4. T. Aoki, Y. Nishikawa, and M. Kuwata-Gonokami, “Room-temperature random telegraph noise in luminescence from macroscopic InGaN clusters,” App. Phys. Lett. 78, 1065–1067 (2001). [CrossRef]
  5. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996). [CrossRef]
  6. M. Sugisaki, H.-W. Ren, S. V. Nair, K. Nishi, and Y. Masumoto, “External-field effects on the optical spectra of self-assembled InP quantum dots,” Phys. Rev. B 66, 235309 (2002). [CrossRef]
  7. F. Stefani, J. Hoogenboom, and E. Barkai, “Beyond quantum jumps: Blinking nanoscale light emitters,” Phys. Today 62, 34–39 (2009). [CrossRef]
  8. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459, 686–689 (2009). [CrossRef] [PubMed]
  9. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Den-Baars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-Containing (Al,In,GaN)N alloy semiconductors,” Nature Mat. 5, 810 816 (2006). [CrossRef]
  10. H. Zhao, R. A. Arif, and N. Tansu, “Design Analysis of Staggered InGaN Quantum Wells Light-Emitting Diodes at 500–540nm,” IEEE J. Sel. Top. Quantum Electron . 15, 4, 1104–1114 (2009).
  11. Y. Kawakami, A. Kaneta, K. Omae, A. Shikanai, K. Okamoto, G. Marutsuki, Y. Narukawa, T. Mukai, and S. Fujita, “Recombination dynamics in low-dimensional nitride semiconductors,” Phys. Stat. Sol. (B) 240, 337–343 (2003). [CrossRef]
  12. E. Betzig and J. K. Trautman, “Near-field optics, microscopy, spectroscopy and surface modification beyond the diffraction limit,” Science 5067, 189–195 (1992). [CrossRef]
  13. A. Kaneta, M. Funato, and Y. Kawakami, “Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra,” Phys. Rev. B 78, 125317 (2008). [CrossRef]
  14. R. Micheletto, N. Yoshimatsu, M. Yokokawa, T. An, H. Lee, and S. Okazaki, “Optical study of a polymeric led with a nano-sized electrode realized by a modified snom setup,” Opt. Commun. 196, 47 – 53 (2001). [CrossRef]
  15. S. Mononobe, M. Naya, T. Saiki, and M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” App. Opt. 36, 1496–1500 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2098 KB)      QuickTime
» Media 2: AVI (8305 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited