OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 173–178

Multi-zone light emission in a one-dimensional ZnO waveguide with hybrid structures

Qi Zhang, Junjie Qi, Jing Zhao, Xin Li, and Yue Zhang  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 173-178 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observed multi-zone light emission in a one-dimensional waveguide based on an individual pearl-like ZnO nanowire with hybrid structures, which was obtained through an electrical breakdown process. E2 (high) mode in Raman spectra revealed a blueshift while a redshift of UV near band edge emission was observed by focusing laser on the polycrystalline parts at room temperature. Strong light emission was observed from the polycrystalline parts except the end in the pearl-like ZnO nanowires as compared with columnar ones, which is associated with the light propagation in the waveguide determined by the different dielectric constants between single crystal and polycrystal.

© 2011 OSA

OCIS Codes
(160.0160) Materials : Materials
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: April 8, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: April 22, 2011
Published: April 29, 2011

Qi Zhang, Junjie Qi, Jing Zhao, Xin Li, and Yue Zhang, "Multi-zone light emission in a one-dimensional ZnO waveguide with hybrid structures," Opt. Mater. Express 1, 173-178 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010). [CrossRef] [PubMed]
  2. Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010). [CrossRef]
  3. Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006). [CrossRef] [PubMed]
  4. Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010). [CrossRef] [PubMed]
  5. Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007). [CrossRef] [PubMed]
  6. X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009). [CrossRef]
  7. G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010). [CrossRef]
  8. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007). [CrossRef] [PubMed]
  9. H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010). [CrossRef]
  10. H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010). [CrossRef]
  11. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009). [CrossRef]
  12. J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009). [CrossRef]
  13. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998). [CrossRef]
  14. Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010). [CrossRef]
  15. Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).
  16. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966). [CrossRef]
  17. S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).
  18. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969). [CrossRef]
  19. J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971). [CrossRef]
  20. H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996). [CrossRef]
  21. C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006). [CrossRef]
  22. Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006). [CrossRef]
  23. T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006). [CrossRef]
  24. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003). [CrossRef]
  25. C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009). [CrossRef]
  26. X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008). [CrossRef]
  27. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003). [CrossRef]
  28. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998). [CrossRef]
  29. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009). [CrossRef] [PubMed]
  30. M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002). [CrossRef] [PubMed]
  31. H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010). [CrossRef]
  32. J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited