OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 179–184

Reducing spectral attenuation in small-core photonic crystal fibers

I. Gris-Sánchez, B.J. Mangan, and J.C. Knight  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 179-184 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a modified fabrication process to reduce spectral attenuation in highly nonlinear photonic crystal fibers (PCF) by reducing the effect of OH- content in the silica glass. In particular we show outstanding results for small core sizes of 2μm diameter including an attenuation of 10dB/km at the OH- peak wavelength of 1384nm, by annealing the preform prior to the fiber draw.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Materials for Fiber Optics

Original Manuscript: February 24, 2011
Revised Manuscript: April 11, 2011
Manuscript Accepted: April 21, 2011
Published: May 2, 2011

I. Gris-Sánchez, B.J. Mangan, and J.C. Knight, "Reducing spectral attenuation in small-core photonic crystal fibers," Opt. Mater. Express 1, 179-184 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO(2)-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009). [CrossRef] [PubMed]
  2. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33(18), 2122–2124 (2008). [CrossRef] [PubMed]
  3. J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30(15), 1938–1940 (2005). [CrossRef] [PubMed]
  4. C. Guo, S. Ruan, P. Yan, E. Pan, and H. Wei, “Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser,” Opt. Express 18(11), 11046–11051 (2010). [CrossRef] [PubMed]
  5. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004). [CrossRef] [PubMed]
  6. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008). [CrossRef] [PubMed]
  7. S. A. Dekker, R. Pant, A. C. Judge, C. Martijn de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-Efficient, Octave Spanning Soliton Self Frequency Shift Using a Photonic Crystal Fiber with Low OH Loss,” in Frontiers in Optics, OSA Technical Digest (CD)(Optical Society of America, 2010), PDPB6. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-PDPB6
  8. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003). [CrossRef] [PubMed]
  9. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996). [CrossRef]
  10. J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982). [CrossRef]
  11. M. Nielsen, C. Jacobsen, N. Mortensen, J. Folkenberg, and H. Simonsen, “Low-loss photonic crystal fibers for transmission systems and their dispersion properties,” Opt. Express 12(7), 1372–1376 (2004). [CrossRef] [PubMed]
  12. M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12(8), 1775–1779 (2004). [CrossRef] [PubMed]
  13. K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” Eur. Conf. Optical Commun. (ECOC) (2007) Paper PD2.1.
  14. R. T. Bise and D. J. Trevor, “Surface absorption in microstructured optical fibers,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WI4, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2004-WI4
  15. K. Kurokawa, K. Nakajima, K. Tsujikawa, T. Yamamoto, and K. Tajima, “Ultra-wideband transmission over low loss pcf,” J. Lightwave Technol. 27(11), 1653–1662 (2009). [CrossRef]
  16. M.-C. Phan-Huy, J.-M. Moison, J. A. Levenson, S. Richard, G. Mélin, M. Douay, and Y. Quiquempois, “Surface Roughness and Light Scattering in a Small Effective Area Microstructured Fiber,” J. Lightwave Technol. 27(11), 1597–1604 (2009). [CrossRef]
  17. P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005). [CrossRef] [PubMed]
  18. P. Kaiser, “Drawing-induced coloration in vitreous silica fibers,” J. Opt. Soc. Am. 64(4), 475–481 (1974). [CrossRef]
  19. Y. Hayashi, Y. Okuda, H. Mitera, and K. Kato, “Formation of Drawing or Radiation-Induced Defects in Germanium Doped Silica Core Optical Fiber,” Jpn. J. Appl. Phys. 33(Part 2, No. 2B), L233–L234 (1994). [CrossRef]
  20. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  21. A. Monteville, D. Landais, O. Le Goffic, D. Tregoat, N. J. Traynor, T. Nguyen, S. Lobo, T. Chartier, and J. Simon, “Low Loss, Low OH, Highly Non-linear Holey Fiber for Raman Amplification,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMC1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMC1
  22. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow Loss and Long Length Photonic Crystal Fiber,” J. Lightwave Technol. 22(1), 7–10 (2004). [CrossRef]
  23. K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, “Low water peak photonic crystal fibers,” 29th European conference on optical communication ECOC'03 (Rimini, Italy), pp. 42–43 (2003).
  24. I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing Spectral Attenuation in Solid-Core Photonic Crystal Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWK1
  25. Heraeus, “High purity rods”. http://heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_sf/2009_sf/PCF.pdf
  26. Heraeus, “Quartz glass for optics data and properties” http://www.heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_mo/SO_Data_and_properties_ EN.pdf.
  27. L. Nuccio, S. Agnello, and R. Boscaino, “Intrinsic generation of OH groups in dry silicon dioxide upon thermal treatments,” Appl. Phys. Lett. 93(15), 151906 (2008). [CrossRef]
  28. L. Nuccio, S. Agnello, and R. Boscaino, “Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies,” J. Phys. Condens. Matter 20(38), 385215 (2008). [CrossRef]
  29. R. K. Iler, The Chemistry of Silica (John Wiley and Sons, New York, 1979), Chap 6.
  30. R. H. Doremus, Glass Science, (John Wiley and Sons, New York, 1973), Chap 7.
  31. E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976). [CrossRef]
  32. Y. Hibino and H. Hanafusa, “Defect structure and formation mechanisms of drawing-induced absorption at 630nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986). [CrossRef]
  33. H. Mehrer, Diffusion in Solids (Springer-Verlag Berlin Heidelberg, 2007), Chap 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited