OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 207–222

Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization

Eiji Hata, Ken Mitsube, Keisuke Momose, and Yasuo Tomita  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 207-222 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the photopolymerization kinetics and volume holographic recording characteristics of silica nanoparticle-polymer composites using thiol-ene monomers capable of step-growth polymerization. Real-time Fourier transform spectroscopy and photocalorimetry are used to characterize the visible light curing kinetics of a thiol-ene monomer system consisting of secondary dithiol with high self-life stability and low odor and triene with rigid structure and high electron density. It is shown that while the nanoparticle-(thiol-ene)polymer composites exhibit high transparency, their saturated refractive index modulation (Δnsat ) and material sensitivity (S) are as large as 1×10−2 and 1615 cm/J, respectively. The polymerization shrinkage is reduced as low as 0.4% as a result of the late gelation in conversion. These values meet the acceptable values for holographic data storage media (i.e., 5×10−3, 500 cm/J and 0.5% for Δnsat , S and shrinkage, respectively). It is also shown that because of the dispersion of inorganic silica nanoparticles and the use of the triene monomer having the rigid structure of the triazine functional group, the thermal stability of recorded holograms is much improved over our previously reported nanoparticle-polymer composites using organic nanoparticles and primary mercaptopropionate trithiol/allyl ether triene monomers [Opt. Lett. 35, 396 (2010)].

© 2011 OSA

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials
(160.4236) Materials : Nanomaterials
(160.5335) Materials : Photosensitive materials

ToC Category:
Organics and Polymers

Original Manuscript: February 27, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: May 6, 2011
Published: May 18, 2011

Eiji Hata, Ken Mitsube, Keisuke Momose, and Yasuo Tomita, "Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization," Opt. Mater. Express 1, 207-222 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.L. Beecroft and C.K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997). [CrossRef]
  2. See, for example, M. Kaczmarek and Y. Tomita, eds., a special issue on Optics of Nanocomposite Materials, J. Opt. A: Pure Appl. Opt. 11, 020201–024023 (2009). [CrossRef]
  3. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002). [CrossRef]
  4. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004). [CrossRef] [PubMed]
  5. C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 5, 1623–1629 (2005). [CrossRef]
  6. W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106-1–012106-3 (2005). [CrossRef]
  7. Y. Tomita, K. Furushima, Y. Endoh, M. Hidaka, K. Ohmori, and K. Chikama, “Volume holographic recording in multi-component photopolymers with hyperbranched polymers as organic nanoparticles,” Proc. SPIE 6187, 618702-1–618702-10 (2006).
  8. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103-1–1071103-3 (2006). [CrossRef]
  9. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006). [CrossRef] [PubMed]
  10. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
  11. O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704-1–105704-7 (2007). [CrossRef]
  12. K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108-1–113108-6 (2008). [CrossRef]
  13. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt. 11, 024010-1–024010-7 (2009). [CrossRef]
  14. E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide based photopolymer,” J. Opt. A: Pure Appl. Opt. 11, 024016-1–024016-9 (2009). [CrossRef]
  15. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107-1–023107-6 (2010).
  16. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008). [CrossRef] [PubMed]
  17. H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, Berlin, 2000).
  18. E. Hata, S. Koda, K. Gotoh, and Y. Tomita, “Volume holographic recording in nanoparticle-polymer composites with reduced polymerization shrinkage,” Technical Digest of CLEO-Europe, June 15–19, 2009, CC2.2-THU, Munich, Germany, (2009).
  19. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010). [CrossRef] [PubMed]
  20. Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE 7722, 772229-1–772229-7 (2010).
  21. G. Odian, Principles of Polymerization , 4th ed. (Wiley, New York, 1994), Chap.2, p.110.
  22. C.E. Hoyle, T.Y. Lee, and T. Roper, “Thiol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem. 42, 5301–5338 (2004). [CrossRef]
  23. H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005). [CrossRef] [PubMed]
  24. J. A. Carioscia, H. Lu, J. W. Stansbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater. 21,1137–1143 (2005). [CrossRef] [PubMed]
  25. J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Evaluation and control of thiol-ene/thiol-epoxy hybrid networks,” Polymer 48, 1526–1532 (2007). [CrossRef]
  26. D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  27. Q. Li, H. Zhou, D. A. Wicks, and C. E. Hoyle, “Thiourethane-based thiol-ene high Tg networks: preparation, thermal, mechanical, and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 45, 5103–5111 (2007). [CrossRef]
  28. T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer 48, 5979–5987 (2007). [CrossRef]
  29. Q. Li, H. Zhou, and C. E. Hoyle, “The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties,” Polymer 50, 2237–2245 (2009). [CrossRef]
  30. N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem. 39, 3311–3319 (2001). [CrossRef]
  31. N.B. Cramer, T. Davies, A.K. O’Brien, and C.N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003). [CrossRef]
  32. L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006). [CrossRef]
  33. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).
  34. L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998). [CrossRef]
  35. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, “Model of noise-grating selectivity in volume holographic recording materials by use of Monte Carlo simulations,” J. Opt. Soc. Am. A 21, 378–387 (2004). [CrossRef]
  36. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809–6814 (2007). [CrossRef] [PubMed]
  37. D. Sabol, M.R. Gleesen, S. Lin, and J.T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 0531131-1–0531131-8 (2010), and references therein. [CrossRef]
  38. J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, “Photosensitive systems for microlithography based on organometallic photinitiators,” Makromol. Chem. Macromol. Symp. 24, 177–187 (1989). [CrossRef]
  39. B.-S. Chiou and S.A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules 30, 7322–7328 (1997). [CrossRef]
  40. S. Nazarenko, D. Haderski, A. Hiltner, and E. Baer, “ Origin of the intermediate damping peak in microlayer composites,” Polym. Eng. Sci. 35, 1682–1687 (1995). [CrossRef]
  41. A.F. Senyurt, G. Warren, J.B. Whitehead, and C.E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer 47, 2741–2749 (2006). [CrossRef]
  42. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30, 839–841 (2005). [CrossRef] [PubMed]
  43. R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, and R.F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerization in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001). [CrossRef]
  44. E. Hata and Y. Tomita, “Dependence of stoichiometric thiol-ene ratio on refractive index modulation and polymerization shrinkage in photopolymerizable nanoparticle-thiol-ene polymer composites,” unpublished.
  45. R. Magnusson and T. K. Gaylord, “Laser scattering induced in lithium niobate,” Appl. Opt. 13, 1545–1548 (1974). [CrossRef]
  46. M. Fally, M.A. Ellabban, R.A. Rupp, M. Fink, J. Wolfberger, and E. Tillmanns, “Characterization of parasitic gratings in LiNbO3,” Phys. Rev. B 61, 15778–15784 (2000). [CrossRef]
  47. J.M. Russo and R.K. Kostuk, “Temperature dependence properties of holographic gratings in phenanthren-quinone doped poly(methyl methacrylate) photopolymers,” Appl. Opt. 46, 7494–7499 (2007). [CrossRef] [PubMed]
  48. Y. Rao and T.N. Blanton, “Polymer nanocomposites with a low thermal expansion coefficient,” Macromolecules 41, 935–941 (2008). [CrossRef]
  49. S. Campbell, S.-H. Lin, X. Yi, and P. Yeh, “Absorption effects in photorefractive volume-holographic memory systems. II. Material heating,” J. Opt. Soc. Am. B 13, 2218–2228 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited