OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 243–251

Highly efficient and photostable photonic materials from diiodinated BODIPY laser dyes

M. Eugenia Pérez-Ojeda, Cliferson Thivierge, Virginia Martín, Ángel Costela, Kevin Burgess, and Inmaculada García-Moreno  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 243-251 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly efficient and photostable laser parameters were observed for the diiodinated BODYPY derivatives 13 both in liquid phase and incorporated into polymeric matrices. The laser samples were transversely pumped at wavelengths near their absorption maxima (515 and 532 nm) at 5 mJ/pulse and 10 Hz repetition rate; these are conditions that would induce photodegrdation of many laser-active fluors. Under these extreme conditions, the new dyes exhibit laser action from 530 nm to 625 nm with remarkable efficiencies, up to 55% in liquid solutions and 45% in poly(methylmethacrylate), and with high photostability since the laser output remains at the initial level, with no sign of degradation, after 100000 pump pulses in the same position of the sample. The efficiencies and photo stabilities of the new dyes outperform those of one presently commercialized and considered benchmarks over this spectral region (i.e. coumarines, xanthenes, perilendiimides). The enhanced optical properties recorded under drastic laser pumping conditions suggest that these new photonic systems could be outstanding in biophotonic applications like optical microscopy and nanoscopy, since they would allow very long observation times and improved spatial resolution.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Laser Materials

Original Manuscript: April 25, 2011
Revised Manuscript: May 16, 2011
Manuscript Accepted: May 17, 2011
Published: May 25, 2011

M. Eugenia Pérez-Ojeda, Cliferson Thivierge, Virginia Martín, Ángel Costela, Kevin Burgess, and Inmaculada García-Moreno, "Highly efficient and photostable photonic materials from diiodinated BODIPY laser dyes," Opt. Mater. Express 1, 243-251 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Duarte, ed., Tunable Laser Applications, 2nd ed. (CRC Press, Boca Raton, 2008).
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  3. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  4. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317(5845), 1749–1753 (2007). [CrossRef] [PubMed]
  5. X. Zhuang, “Nano-imaging with Storm,” Nat. Photonics 3(7), 365–367 (2009). [CrossRef] [PubMed]
  6. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef] [PubMed]
  7. J. Lippincott-Schwartz and S. Manley, “Putting super-resolution fluorescence microscopy to work,” Nat. Methods 6(1), 21–23 (2009). [CrossRef] [PubMed]
  8. H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A. 104(51), 20308–20313 (2007). [CrossRef] [PubMed]
  9. M. Bossi, J. Fölling, V. N. Belov, V. P. Boyarskiy, R. Medda, A. Egner, C. Eggeling, A. Schönle, and S. W. Hell, “Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species,” Nano Lett. 8(8), 2463–2468 (2008). [CrossRef] [PubMed]
  10. V. P. Boyarskiy, V. N. Belov, R. Medda, B. Hein, M. Bossi, and S. W. Hell, “Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment,” Chemistry 14(6), 1784–1792 (2008). [CrossRef] [PubMed]
  11. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  12. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008). [CrossRef] [PubMed]
  13. R. Y. Tsien, L. Ernst, and A. Waggoneri, “Fluorophores for confocal microscopy: photophysics and photochemistry,” in Handbook of Biological Confocal Microscopy, 3th ed., J. B. Pawley, ed. (Springer, 2006).
  14. A. Loudet and K. Burgess, “BODIPY dyes and their derivatives: syntheses and spectroscopic properties,” Chem. Rev. 107(11), 4891–4932 (2007). [CrossRef] [PubMed]
  15. G. Ulrich, R. Ziessel, and A. Harriman, “The chemistry of fluorescent bodipy dyes: versatility unsurpassed,” Angew. Chem. Int. Ed. Engl. 47(7), 1184–1201 (2008). [CrossRef] [PubMed]
  16. A. B. Descalzo, H. J. Xu, Z. Shen, and K. Rurack, “Red/near-infrared boron-dipyrromethene dyes as strongly emitting fluorophores,” Ann. N. Y. Acad. Sci. 1130(1), 164–171 (2008). [CrossRef] [PubMed]
  17. A. Costela, I. García-Moreno, and R. Sastre, “Materials for solid-state dye lasers,” in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa, ed. (Academic, 2001).
  18. A. Costela, I. García-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5(21), 4745–4763 (2003). [CrossRef]
  19. J. B. Prieto, T. Arbeloa, M. Liras, V. M. Martínez, and F. L. Arbeloa, “Concerning the color change of pyrromethene 650 dye in electron-donor solvents,” J. Photochem. Photobiol., A 184(3), 298–305 (2006). [CrossRef]
  20. J. Bañuelos, F. López Arbeloa, T. Arbeloa, S. Salleres, F. Amat-Guerri, M. Liras, and I. López Arbeloa, “Photophysical study of new versatile multichromophoric diads and triads with BODIPY and polyphenylene groups,” J. Phys. Chem. A 112(43), 10816–10822 (2008). [CrossRef] [PubMed]
  21. V. P. Yakubovskyi, M. P. Shandura, and Y. P. Kovtun, “Boradipyrromethenecyanines,” Eur. J. Org. Chem. 2009(19), 3237–3243 (2009). [CrossRef]
  22. Y. W. Wang, A. B. Descalzo, Z. Shen, X. Z. You, and K. Rurack, “Dihydronaphthalene-fused boron-dipyrromethene (BODIPY) dyes: insight into the electronic and conformational tuning modes of BODIPY fluorophores,” Chemistry 16(9), 2887–2903 (2010). [CrossRef] [PubMed]
  23. C. Thivierge, A. Loudet, and K. Burgess, “Brilliant BODIPY−fluorene copolymers with dispersed absorption and emission maxima,” Macromolecules 44(10), 4012–4015 (2011), doi:. [CrossRef]
  24. M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005). [CrossRef]
  25. A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Highly photostable solid-state dye lasers based on silicon-modified organic matrices,” J. Appl. Phys. 101(7), 073110 (2007). [CrossRef]
  26. A. Costela, I. García-Moreno, C. Gomez, R. Sastre, F. Amat-Guerri, M. Liras, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Photophysical and lasing properties of new analogs of the boron−dipyrromethene laser dye PM567 in liquid solution,” J. Phys. Chem. A 106(34), 7736–7742 (2002). [CrossRef]
  27. I. López Arbeloa, “Fluorescence quantum yield evaluation. Re-absorption and re-emission corrections,” J. Photochem. 14(2), 97–105 (1980). [CrossRef]
  28. I. García-Moreno, A. Costela, L. Campo, R. Sastre, F. Amat-Guerri, M. Liras, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “8-phenyl-substituted dipyrromethene BF2 complexes as highly efficient and photostable laser dyes,” J. Phys. Chem. A 108(16), 3315–3323 (2004). [CrossRef]
  29. A. Costela, I. García-Moreno, M. Pintado-Sierra, F. Amat-Guerri, R. Sastre, M. Liras, F. L. Arbeloa, J. B. Prieto, and I. L. Arbeloa, “New analogues of the BODIPY dye PM597: photophysical and lasing properties in liquid solutions and in solid polymeric matrices,” J. Phys. Chem. A 113(28), 8118–8124 (2009). [CrossRef] [PubMed]
  30. J. Bañuelos-Prieto, A. R. Agarrabeitia, I. García-Moreno, I. López-Arbeloa, A. Costela, L. Infantes, M. E. Pérez-Ojeda, M. Palacios-Cuesta, and M. J. Ortiz, “Controlling optical properties and function of BODIPY by using asymmetric substitution effects,” Chemistry 16(47), 14094–14105 (2010). [CrossRef] [PubMed]
  31. G. Jones, S. Kumar, O. Klueva, and D. Pacheco, “Photoinduced electron transfer for pyrromethene dyes,” J. Phys. Chem. A 107(41), 8429–8434 (2003). [CrossRef]
  32. W. Zhao and E. M. Carreira, “Conformationally restricted aza-BODIPY: highly fluorescent, stable near-infrared absorbing dyes,” Chemistry 12(27), 7254–7263 (2006). [CrossRef] [PubMed]
  33. T. Rohand, W. Qin, N. Boens, and W. Dehaen, “Palladium-datalyzed doupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum,” Eur. J. Org. Chem. 2006(20), 4658–4663 (2006). [CrossRef]
  34. R. Ziessel, G. Ulrich, and A. Harriman, “The chemistry of BODIPY: a new El Dorado for fluorescence tools,” N. J. Chem. 31(4), 496–501 (2007). [CrossRef]
  35. W. Qin, T. Rohand, W. Dehaen, J. N. Clifford, K. Driesen, D. Beljonne, B. Van Averbeke, M. Van der Auweraer, and N. Boens, “Boron dipyrromethene analogs with phenyl, styryl, and ethynylphenyl substituents: synthesis, photophysics, electrochemistry, and quantum-chemical calculations,” J. Phys. Chem. A 111(35), 8588–8597 (2007). [CrossRef] [PubMed]
  36. K. Umezawa, Y. Nakamura, H. Makino, D. Citterio, and K. Suzuki, “Bright, color-tunable fluorescent dyes in the visible-near-infrared region,” J. Am. Chem. Soc. 130(5), 1550–1551 (2008). [CrossRef] [PubMed]
  37. R. Ziessel, G. Ulrich, A. Harriman, M. A. H. Alamiry, B. Stewart, and P. Retailleau, “Solid-state gas sensors developed from functional difluoroboradiazaindacene dyes,” Chemistry 15(6), 1359–1369 (2009). [CrossRef] [PubMed]
  38. I. García-Moreno, F. Amat-Guerri, M. Liras, A. Costela, L. Infantes, R. Sastre, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Structural change in the BODIPY dye PM567 enhancing the laser action in liquid and solid media,” Adv. Funct. Mater. 17(16), 3088–3098 (2007). [CrossRef]
  39. A. Costela, I. García-Moreno, M. Pintado-Sierra, F. Amat-Guerri, M. Liras, R. Sastre, F. L. Arbeloa, J. B. Prieto, and I. L. Arbeloa, “New laser dye based on the 3-styryl analog of the BODIPY dye PM567,” J. Photochem. Photobiol., A 198(2-3), 192–199 (2008). [CrossRef]
  40. M. Álvarez, A. Costela, I. García-Moreno, F. Amat-Guerri, M. Liras, R. Sastre, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Photophysical and laser emission studies of 8-polyphenylene-substituted BODIPY dyes in liquid solution and in solid polymeric matrices,” Photochem. Photobiol. Sci. 7(7), 802–813 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited