OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 259–269

Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique

Joo Yeon Kim, Nils B. Brauer, Vahid Fakhfouri, Dmitri L. Boiko, Edoardo Charbon, Gabi Grutzner, and Juergen Brugger  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 259-269 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microlens arrays fabricated by a direct ink-jet printing of UV-curable hybrid polymer are reported. A periodic pattern of polymer drops was ink-jet printed on the surface-treated glass substrate and cured in the UV-light. Using this simple technique, we demonstrated periodic arrays of almost semi-spherical microlenses of 50 µm diameter size and a focal distance of 48µm. The optical characteristics of solitary µ-lenses and arrays comprising up to 64x64 microlenses are measured both in the near- and far-field zones. Large numerical aperture and short focal distance make the ink-jet printing of microlenses very attractive for applications in optical interconnects, large 2D VCSEL arrays and pixelated imagine sensors utilizing CCD or SPAD arrays, offering thus an efficient, simple and a cheap alternative to the conventionally used photolithography technique.

© 2011 OSA

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(160.5470) Materials : Polymers
(160.6060) Materials : Solgel
(220.3630) Optical design and fabrication : Lenses
(220.4000) Optical design and fabrication : Microstructure fabrication
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Organics and Polymers

Original Manuscript: February 22, 2011
Revised Manuscript: May 14, 2011
Manuscript Accepted: May 14, 2011
Published: May 25, 2011

Joo Yeon Kim, Nils B. Brauer, Vahid Fakhfouri, Dmitri L. Boiko, Edoardo Charbon, Gabi Grutzner, and Juergen Brugger, "Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique," Opt. Mater. Express 1, 259-269 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994). [CrossRef]
  2. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt. 8(7), S407–S429 (2006). [CrossRef]
  3. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988). [CrossRef] [PubMed]
  4. C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J. Appl. Phys. 13(1), 31–37 (2001). [CrossRef]
  5. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009). [CrossRef] [PubMed]
  6. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling,” J. Opt. A, Pure Appl. Opt. 6(1), 94–97 (2004). [CrossRef]
  7. D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010). [CrossRef]
  8. W. Cheong, L. Yuan, V. Koudriachov, and W. Yu, “High sensitive SiO2/TiO2 hybrid sol-gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography,” Opt. Express 10(14), 586–590 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-14-586 . [PubMed]
  9. V. Fakhfouri, N. Cantale, G. Mermoud, J. Y. Kim, D. Boiko, E. Charbon, A. Martinoli, and J. Brugger, “Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses,” in Proceedings of 21st IEEE International Conference on Micro Electro Mechanical Systems MEMS 2008 (Tucson, AZ, 2008), pp. 407–410.
  10. Y. S. Yang, D. H. Youn, S. H. Kim, S. Ch. Lim, H. S. Shim, S. Y. Kang, and I. K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 520, 239–244 (2010). [CrossRef]
  11. C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” IEEE J. Display Technol. 5(5), 147–151 (2009). [CrossRef]
  12. S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhofer, “Replicated optical MEMS in sol-gel materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004). [CrossRef]
  13. P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4687 . [CrossRef] [PubMed]
  14. S. A. Akhmanov Y. E. D'yakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981), pp. 306–307.
  15. A. A. Grütter, H. P. Weber, and R. Dändliker, “Imperfectly mode-locked laser emission and its effects on nonlinear optics,” Phys. Rev. 185(2), 629–643 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited