OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 278–292

Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 278-292 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hafnium dioxide films have been produced by plasma ion assisted electron beam evaporation, utilizing argon or xenon as working gases. The optical constants of the layers have been investigated by spectrophotometry, while X-ray reflection measurements (XRR), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) have been performed with selected samples. The correlation between structural and optical properties is discussed. With respect to optical quality, the application of xenon as working gas results in coatings with higher refractive index and smaller surface roughness than the application of argon. This effect is attributed to a more efficient momentum transfer from high energetic working gas ions or atoms to hafnium atoms during deposition.

© 2011 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.6870) Thin films : Thin films, other properties

ToC Category:
Thin Films

Original Manuscript: March 16, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 18, 2011
Published: May 26, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, "Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases," Opt. Mater. Express 1, 278-292 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010). [CrossRef]
  2. J. M. Khoshman, A. Khan, and M. E. Kordesch, “Amorphous hafnium oxide thin films for antireflection optical coatings,” Surf. Coat. Tech. 202(11), 2500–2502 (2008). [CrossRef]
  3. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002). [CrossRef]
  4. J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surf. Coat. Tech. 201(6), 3530–3535 (2006). [CrossRef]
  5. T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000). [CrossRef]
  6. N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010). [CrossRef]
  7. J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008). [CrossRef] [PubMed]
  8. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009). [CrossRef]
  9. O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50(9), C69–C74 (2011). [CrossRef] [PubMed]
  10. B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol. 18(5), 2372–2377 (2000). [CrossRef]
  11. D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005). [CrossRef]
  12. M. Jerman, Z. Qiao, and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density,” Appl. Opt. 44(15), 3006–3012 (2005). [CrossRef] [PubMed]
  13. A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006). [CrossRef]
  14. E. E. Hoppe, R. S. Sorbello, and C. R. Aita, “Near-edge optical absorption behavior of sputter deposited hafnium dioxide,” J. Appl. Phys. 101(12), 123534 (2007). [CrossRef]
  15. J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004). [CrossRef]
  16. M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001). [CrossRef]
  17. A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Günster, J. Kohlhaas, M. Marsi, M. Trovò, R. Walker, D. Garzella, M. E. Couprie, P. Torchio, M. Alvisi, and C. Amra, “High-performance deep-ultraviolet optics for free-electron lasers,” Appl. Opt. 41(16), 3236–3241 (2002). [CrossRef] [PubMed]
  18. J. Bellum, D. Kletecka, P. Rambo, I. Smith, J. Schwarz, and B. Atherton, “Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings,” Appl. Opt. 50(9), C340–C348 (2011). [CrossRef] [PubMed]
  19. X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, J. Lu, X. Wang, and Z. Wang, “Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors,” Appl. Opt. 50(9), C357–C363 (2011). [CrossRef] [PubMed]
  20. Z. Jinlong, C. Xinbin, W. Zhanshan, J. Hongfei, and D. Tao, “HfO2/SiO2 chirped mirrors manufactured by electron beam evaporation,” Appl. Opt. 50(9), C388–C391 (2011). [CrossRef] [PubMed]
  21. S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000). [CrossRef]
  22. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011). [CrossRef] [PubMed]
  23. G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).
  24. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41(16), 3256–3261 (2002). [CrossRef] [PubMed]
  25. M. Gilo and N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350(1-2), 203–208 (1999). [CrossRef]
  26. J. D. Targove and H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition,” Appl. Opt. 27(18), 3779–3781 (1988). [CrossRef] [PubMed]
  27. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009). [CrossRef]
  28. M. Born and E. Wolf, Principle of Optics (Pergamon Press, 1968)
  29. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008). [CrossRef]
  30. E. C. Freeman and W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20(2), 716–728 (1979). [CrossRef]
  31. H. Finkenrath, “The Moss rule and the influence of doping on the optical dielectric constant of semiconductors—I,” Infrared Phys. 28(5), 327–332 (1988). [CrossRef]
  32. O. Stenzel, “A model for calculating the effect of nanosized pores on refractive index, thermal shift and mechanical stress in optical coatings,” J. Phys. D 42(5), 055312 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited