OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 332–343

Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment

Alexander Gumennik, Yael Kurzweil-Segev, and Aharon J. Agranat  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 3, pp. 332-343 (2011)
http://dx.doi.org/10.1364/OME.1.000332


View Full Text Article

Enhanced HTML    Acrobat PDF (1813 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Studies of the electrooptic effect in potassium tantalate niobate (KTN) and Li doped KTN in the vicinity of the ferroelectric phase transition are reported. It was observed that in KTN the standard electrooptic behavior is accompanied by electrically induced depolarization of the light traversing through the crystal. This behavior is attributed to the influence of the fluctuating dipolar clusters that are formed in KTN above the ferroelectric phase transition due to the emergence of the Nb ions out of the center of inversion of the unit cell. It was shown in addition that this behavior is inhibited in Li doped KTN, which enables exploiting the large electrooptic effect in these crystals.

© 2011 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(250.4110) Optoelectronics : Modulators
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Crystalline Materials

History
Original Manuscript: April 6, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: May 26, 2011
Published: June 2, 2011

Citation
Alexander Gumennik, Yael Kurzweil-Segev, and Aharon J. Agranat, "Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment," Opt. Mater. Express 1, 332-343 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-3-332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Lerner, P. Ben Ishai, A. J. Agranat, and Yu. Feldman, “Percolation of polar nanoregions: a dynamic approach to the ferroelectric phase transition,” J. Non-Cryst. Solids 353(47-51), 4422–4427 (2007). [CrossRef]
  2. A. J. Agranat, M. Razvag, M. Balberg, and V. Leyva, “Dipolar holographic gratings induced by the photorefractive process in potassium lithium tantalate niobate at the paraelectric phase,” J. Opt. Soc. Am. B 14(8), 2043–2048 (1997). [CrossRef]
  3. A. J. Agranat, M. Razvag, M. Balberg, and G. Bitton, “Holographic gratings by spatial modulation of the Curie-Weiss temperature in photorefractive K1-xLixTa1-yNbyO3:Cu,V,” Phys. Rev. B 55(19), 12818–12821 (1997). [CrossRef]
  4. G. Bitton, M. Razvag, and A. J. Agranat, “Formation of metastable ferroelectric clusters in K1-xLixTa1-yNbyO3:Cu,V at the paraelectric phase,” Phys. Rev. B 58(9), 5282–5286 (1998). [CrossRef]
  5. E. DelRe, M. Tamburrini, M. Segev, R. Della Pergola, and A. J. Agranat, “Spontaneous self-trapping of optical beams in metastable paraelectric crystals,” Phys. Rev. Lett. 83(10), 1954–1957 (1999). [CrossRef]
  6. E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nano-disordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011). [CrossRef]
  7. A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the g44 configuration,” Opt. Lett. 31(19), 2849–2851 (2006). [CrossRef] [PubMed]
  8. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, 1984), Chapter 7.3.1.
  9. R. Hofmeister, A. Yariv, and A. Agranat, “Growth and characterization of the perovskite K1-yLiyTa1-xNbxO3:Cu,” J. Cryst. Growth 131(3-4), 486–494 (1993). [CrossRef]
  10. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, 1977), Chapter 4.
  11. Y. Girshberg and Y. Yacoby, “Off-centre displacements and ferroelectric phase transition in dilute KTa1−xNbxO3,” J. Phys. Condens. Matter 13(39), 8817–8830 (2001). [CrossRef]
  12. G. Bitton, Yu. Feldman, and A. J. Agranat, “Relaxation processes of off-center impurities in KTN:Li crystals,” J. Non-Cryst. Solids 305(1-3), 362–367 (2002). [CrossRef]
  13. J. Toulouse, “The three characteristic temperatures of relaxor dynamics and their meaning,” Ferroelectrics 369(1), 203–213 (2008). [CrossRef]
  14. R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics (Elsevier, 1974).
  15. P. Ishai, C. de Oliveira, Y. Ryabov, Y. Feldman, and A. Agranat, “Glass forming liquid kinetics manifested in a KTN:Cu crystal,” Phys. Rev. B 70(13), 132104 (2004). [CrossRef]
  16. A. J. Agranat, “Optical lambda-switching at telecom wavelengths based on electroholography,” Top. Appl. Phys. 86, 133–161 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited