OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 344–356

Broadband Er3+ emission in highly nonlinear Bismuth modified Zinc-Borate glasses

Atul D. Sontakke, Kaushik Biswas, Anal Tarafder, R. Sen, and K. Annapurna  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 3, pp. 344-356 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband NIR emission from Er3+ in highly nonlinear zinc-bismuth-borate glasses with full width at half maximum reaching up to 106 nm is reported. The glass compositional effects on thermal, structural, optical and spectroscopic properties have been explored in view of all-optical communication applications. The Zero Dispersion Wavelength of these glasses is found to be varying from 1.46 to 2.26μm. The observed enhancement in fluorescence intensity, lifetime and quantum efficiency of 4I13/24I15/2 transition with bismuth addition is attributed to reduced multiphonon relaxations with decreased host phonon energy. The gain profile covering C and L-bands of communication windows suggests their potentiality in broad-band amplification.

© 2011 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Laser Materials

Original Manuscript: April 27, 2011
Revised Manuscript: May 29, 2011
Manuscript Accepted: May 30, 2011
Published: June 6, 2011

Atul D. Sontakke, Kaushik Biswas, Anal Tarafder, R. Sen, and K. Annapurna, "Broadband Er3+ emission in highly nonlinear Bismuth modified Zinc-Borate glasses," Opt. Mater. Express 1, 344-356 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Sugimoto, “Ultrafast optical switches and wavelength division multiplexing (WDM) amplifiers based on bismuth oxide glasses,” J. Am. Ceram. Soc. 85(5), 1083–1088 (2002). [CrossRef]
  2. S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002). [CrossRef]
  3. K. Kikuchi, K. Taira, N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002). [CrossRef]
  4. N. Sugimoto, T. Nagashima, T. Hasegava, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficiemt of 1360 W−1km−1,” in Proceedings of Optical Fiber Commun, Fibers, 2004 (OFC-2004).
  5. S. Tanabe, “Development of rare-earth doped fiber amplifiers for broad band wavelength-division-multiplexing telecommunication,” Photon. Based Wavel. Integr. Manip. IPAP Books 2, 101–112 (2005).
  6. I. P. Kaminow, C. R. Doerr, C. Dragone, T. Koch, U. Koren, A. A. M. Saleh, A. J. Kirby, C. M. Ozveren, B. Schofield, R. E. Thomas, R. A. Barry, D. M. Castagnozzi, V. W. S. Chan, B. R. Hemenway, D. Marquis, S. A. Parikh, M. L. Stevens, E. A. Swanson, S. G. Finn, R. G. Gallager, “A wideband all-optical WDM network,” IEEE J. Sel. Areas Comm. 14(5), 780–799 (1996). [CrossRef]
  7. S. Kinoshita, T. Okiyama, K. Moruya, “Wideband WDM erbium-doped optical fiber amplifiers for 10Gb/s, 32-channel SMF transmission system,” Fujistu Sci. Tech. J. 35, 82–90 (1999).
  8. A. Mori, T. Sakamoto, K. Kobayashi, K. Shikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, M. Shimizu, “1.58-μm broad-band erbium-doped tellurite fiber amplifier,” J. Lightwave Technol. 20(5), 794–799 (2002). [CrossRef]
  9. S. Tanabe, N. Sugimoto, S. Ito, T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000). [CrossRef]
  10. J. H. Shin, J. H. Lee, “investigation of signal excited-state absorption in bismuth-based erbium-doped fiber amplifier,” J. Opt. Soc. Am. B 27(7), 1452–1457 (2010). [CrossRef]
  11. A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 μm broadband amplification by tellurite-based EDFAs,” in OFC’97, 1997, Paper PD1.
  12. N. Sugimoto, K. Ochiai, T. Hirose, S. Ohara, Y. Fukasawa, H. Hayashi, K. Furuki, M. Tojo, and Y. Tanaka, “Ultracompact optical amplifier with Bi2O3-based erbium-doped fiber,” Reports Res. Lab. Asahi Glass Co. Ltd. 54 (2004).
  13. S. Q. Man, S. F. Wong, E. Y. B. Pun, “Erbium-doped potassium bismuth gallate glasses,” J. Opt. Soc. Am. B 19(8), 1839–1843 (2002). [CrossRef]
  14. J. Yang, S. Dai, N. Dai, S. Xu, L. Wen, L. Hu, Z. Jiang, “Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses,” J. Opt. Soc. Am. B 20(5), 810–815 (2003). [CrossRef]
  15. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys. 93(2), 977–982 (2003). [CrossRef]
  16. L. R. P. Kassab, A. de Olievera Preto, W. Lozano, F. X. de Sá, G. S. Maciel, “Optical properties and infrared-to-visible upconversion in Er-doped GeO–BiO and GeO–PbO–BiO glasses,” J. Non-crystal Solids 351(43-45), 3468–3475 (2005). [CrossRef]
  17. S. Ohara, N. Sugimoto, “Bi2O3 based erbium doped laser with a tunable range over 130 nm,” Opt. Lett. 33(11), 1201–1203 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-11-1201 . [CrossRef] [PubMed]
  18. A. D. Sontakke, A. Tarafder, K. Biswas, K. Annapurna, “Sensitized red luminescence from Bi3+ co-doped Eu3+:ZnO-B2O3 glasses,” Physica B 404(20), 3525–3529 (2009). [CrossRef]
  19. E. M. Levin, C. L. McDaniel, “The system Bi2O3-B2O3,” J. Am. Ceram. Soc. 45(8), 355–360 (1962). [CrossRef]
  20. A. Bishay, C. Maghrabi, “Properties of bismuth glasses in relation to structure,” Phys. Chem. Glasses 10, 1–11 (1969).
  21. G. Borodi, I. Bratu, S. Simon, “Formation of layered structure on bismuth-borate glass surface,” Mater. Lett. 61(25), 4715–4717 (2007). [CrossRef]
  22. G. E. Rachkovskaya, G. B. Zakharevich, “Properties, structure and application of low-melting lead-bismuth glasses,” Glass Ceram. 61(1/2), 9–12 (2004). [CrossRef]
  23. P. Pascuta, L. Pop, S. Rada, M. Bosca, E. Culea, “The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy,” J. Mater. Sci. 19, 424–428 (2008).
  24. A. D. Sontakke, K. Biswas, A. K. Mandal, K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ions doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010). [CrossRef]
  25. R. Adair, L. L. Chase, S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989). [CrossRef]
  26. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36(7), 1540–1546 (1997). [CrossRef] [PubMed]
  27. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]
  28. G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]
  29. S. Tanabe, T. Ohyagi, N. Saga, T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3302–3310 (2002).
  30. J. R. Ryan, R. Beach, “Optical absorption and stimulated emission of neodymium in yttrium lithium fluoride,” J. Opt. Soc. Am. B 9(10), 1883–1887 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited