OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 365–371

Two-dimensional domain engineering in LiNbO3 via a hybrid patterning technique

Michele Manzo, Fredrik Laurell, Valdas Pasiskevicius, and Katia Gallo  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 3, pp. 365-371 (2011)
http://dx.doi.org/10.1364/OME.1.000365


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel electric field poling technique for the fabrication of nonlinear photonic crystals in congruent LiNbO3 substrates, based on a hybrid bi-dimensional mask, which combines periodic proton-exchange and electrode patterns. With it we demonstrate rectangular bulk lattices with a periodicity of 8 µm x 6.78 µm in 500 µm-thick substrates.

© 2011 OSA

OCIS Codes
(160.2260) Materials : Ferroelectrics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: April 1, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: June 3, 2011
Published: June 7, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express

Citation
Michele Manzo, Fredrik Laurell, Valdas Pasiskevicius, and Katia Gallo, "Two-dimensional domain engineering in LiNbO3 via a hybrid patterning technique," Opt. Mater. Express 1, 365-371 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-3-365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Scott, Ferroelectric Memories (Springer, 2000).
  2. P. Ferraro, S. Grilli, and P. De Natale, eds., Ferroelectric Crystals for Photonic Applications, Vol. 91 of Springer Material Science Series (Springer, 2008), pp. 229–250.
  3. K. Tanaka and Y. Cho, “Actual information storage with a recording density of 4 Tbit/in2 in a ferroelectric recording medium,” Appl. Phys. Lett. 97(9), 092901 (2010). [CrossRef] [PubMed]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993). [CrossRef]
  5. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995). [CrossRef]
  7. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystals,” Opt. Express 18(1), 253–258 (2010). [CrossRef]
  8. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997). [CrossRef]
  9. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000). [CrossRef] [PubMed]
  10. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998). [CrossRef]
  11. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95(13), 133901 (2005). [CrossRef] [PubMed]
  12. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004). [CrossRef] [PubMed]
  13. K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008). [CrossRef] [PubMed]
  14. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009). [CrossRef]
  15. K. Gallo, C. Codemard, C. B. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett. 31(9), 1232–1234 (2006). [CrossRef] [PubMed]
  16. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010). [CrossRef]
  17. G. Rosenman, Kh. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett. 73(7), 865–867 (1998). [CrossRef]
  18. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Ermann, “CW quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch poled lithium niobate,” Appl. Phys. Lett. 24, 1293–1295 (1999).
  19. M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” Appl. Phys. Lett. 98(12), 122910 (2011). [CrossRef]
  20. L.-H. Peng, Y.-C. Zhang, and Y.-C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett. 78(1), 4–6 (2001). [CrossRef]
  21. L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83(17), 3447–3449 (2003). [CrossRef]
  22. D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z cut LiNbO3,” J. Appl. Phys. 54(11), 6218–6220 (1983). [CrossRef]
  23. F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. 10(11), 1606–1609 (1992). [CrossRef]
  24. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005). [CrossRef]
  25. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coeffcients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997). [CrossRef]
  26. W. H. Li, R. Tavlykaev, R. V. Ramaswamy, and S. Samson, “On the fabrication of annealed proton exchanged waveguides with electric field poled domain reversals in Z‐cut LiNbO3,” Appl. Phys. Lett. 68(11), 1470–1472 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 5 Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited