OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 372–378

Green-emissive Mn-activated nanocrystallized glass with willemite-type Zn2GeO4

Yoshihiro Takahashi, Masataka Ando, Rie Ihara, and Takumi Fujiwara  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 3, pp. 372-378 (2011)
http://dx.doi.org/10.1364/OME.1.000372


View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated Mn2+-activated nanocrystallized glasses (NCG) with willemite-type Zn2GeO4 from a zincogermanate system glass added by various MnO-concentrations, and examined their photoluminescence (PL) properties. The Mn2+-activated NCGs indicated bright green-emission based on the 4T16A1 transition of the Mn2+, indicating exclusive Mn2+-occupation of Zn site in the Zn2GeO4 nanocrystals. In addition, green long-lasting photoluminescence (LLP) was also observed in the NCGs with low MnO-concentration. Relation between the MnO-concentration and the LLP property was also considered.

© 2011 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: May 24, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 7, 2011
Published: June 8, 2011

Citation
Yoshihiro Takahashi, Masataka Ando, Rie Ihara, and Takumi Fujiwara, "Green-emissive Mn-activated nanocrystallized glass with willemite-type Zn2GeO4," Opt. Mater. Express 1, 372-378 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-3-372


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett. 72(3), 416–419 (1994). [CrossRef] [PubMed]
  2. T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett. 87(1), 013103 (2005). [CrossRef]
  3. R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, “Formation of hollow ZnO through low temperature oxidation of Zn nanoparticles,” Mater. Lett. 61(4-5), 1060–1063 (2007). [CrossRef]
  4. A. Venkatachalam, B. Klein, J. H. Ryou, S. C. Shen, R. D. Dupuis, and P. D. Yoder, “Design strategies for InGaN-based green lasers,” IEEE J. Quantum Electron. 46(2), 238–245 (2010). [CrossRef]
  5. M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, and C. Wetzel, “Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes,” Phys. Status Solidi 207(6), 1305–1308 (2010). [CrossRef]
  6. C. Liu, Y. K. Kwon, and J. Heo, “Near-infrared photoluminescence of PbS QDs precipitated in the glass matrix,” J. Ceram. Soc. Jpn. 116(1358), 1071–1074 (2008). [CrossRef]
  7. R. Nagai, T. Honma, and T. Komatsu, “Laser patterning of ZnO crystals on the surface of borosilicate glass,” J. Am. Ceram. Soc. 93(3), 658–661 (2010). [CrossRef]
  8. J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration,” J. Phys. Chem. B 108(14), 4369–4375 (2004). [CrossRef]
  9. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, “High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel,” J. Am. Chem. Soc. 132(41), 14385–14387 (2010). [CrossRef] [PubMed]
  10. J. K. Feng, M. O. Lai, and L. Lu, “Zn2GeO4 nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery,” Electrochem. Commun. 13(3), 287–289 (2011). [CrossRef]
  11. J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, and D. A. Keszler, “Zn2GeO4:Mn alternating-current thin-film electroluminescent devices,” J. Lumin. 99(4), 311–324 (2002). [CrossRef]
  12. K. H. Yoon and J. H. Kim, “Structure analysis and luminescent study of thin film zinc germanate doped with manganese,” Thin Solid Films 519(5), 1583–1586 (2010). [CrossRef]
  13. S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, “Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system,” Cryst. Growth Des. 10(10), 4494–4500 (2010). [CrossRef]
  14. Y. Takahashi, M. Ando, K. Iwasaki, H. Masai, and T. Fujiwara, “Defect activation in willemite-type Zn2GeO4 by nanocrystallization,” Appl. Phys. Lett. 97(7), 071906 (2010). [CrossRef]
  15. M. Ando, Y. Takahashi, K. Iwasaki, H. Masai, R. Ihara, and T. Fujiwara, “Fabrication and photoluminescent property of transparent nanocrystallized-glass in Li2O-ZnO-GeO2 system,” IOP Conf. Ser.: Mater. Sci. Eng. (to be published).
  16. K. Iwasaki, Y. Takahashi, H. Masai, and T. Fujiwara, “Blue photoluminescence, greenish-blue afterglow and their Ti-concentration dependence in rare-earth free bazirite-type BaZn1-xTixSi3O9,” Opt. Express 17(20), 18054–18062 (2009). [CrossRef] [PubMed]
  17. M. Kawano, H. Takebe, and M. Kuwabara, “Compositional dependence of the luminescence properties of Mn2+-doped metaphosphate glasses,” Opt. Mater. 32(2), 277–280 (2009). [CrossRef]
  18. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010). [CrossRef] [PubMed]
  19. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976). [CrossRef]
  20. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Jpn. 9(5), 766–779 (1954). [CrossRef]
  21. G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express 19(S3), A312–A318 (2011). [CrossRef]
  22. F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001). [CrossRef]
  23. A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth-activated glass-ceramic in planar format,” Opt. Eng. 50(7), 071105 (2011). [CrossRef]
  24. D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, and H. Fukumura, “Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide film doped with tri- and tetravalent cations prepared by liquid phase epitaxy,” J. Mater. Chem. 16(33), 3369–3374 (2006). [CrossRef]
  25. P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005). [CrossRef]
  26. Y. Takahashi, M. Ando, R. Ihara, and T. Fujiwara, “Formation of Zn defects in willemite-type Zn2GeO4 during supercooled liquid−crystal phase transition,” Appl. Phys. Lett. 98(22), 221907 (2011). [CrossRef]
  27. T. M. Chen, Y. H. Lee, L. Y. Luo, and N. S. Wang, “Luminescence and time-resolved fluorescence decay of Mn2+-activated Zn2GeO4 phosphors under ultraviolet excitation,” Chinese J. Lumin. 26, 183–188 (2005).
  28. T. Maruyama, A. Enomoto, and K. Shirasawa, “Solar cell module colored with fluorescent plate,” Sol. Energy Mater. Sol. Cells 64(3), 269–278 (2000). [CrossRef]
  29. P. Chung, H. H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007). [CrossRef]
  30. A. F. Khan, D. Haranath, R. Yadav, S. Singh, S. Chawla, and V. Dutta, “Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layer,” Appl. Phys. Lett. 93(7), 073103 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited