OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 400–412

On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set

David L. Griscom  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 3, pp. 400-412 (2011)
http://dx.doi.org/10.1364/OME.1.000400


View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

26-year-old electron spin resonance (ESR) and optical data pertaining to isochronal annealing studies of x-ray induced defect centers in a GeO2-SiO2 glass are revisited here with the object of extracting new insights regarding the fundamental natures of these defects. It is concluded that (i) the paramagnetic Ge(1) and Ge(2) centers are two energetically inequivalent configurations of a single trapped-electron defect, in analogy to what is known to be the case for the Ge(II) and Ge(I) centers respectively in α quartz [Isoya et al., J. Chem. Phys. 69, 4876 (1978)], and (ii) the germanium lone pair center (GLPC) stably traps holes only in pairs and hence remains ESR silent.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2220) Materials : Defect-center materials
(160.2750) Materials : Glass and other amorphous materials
(300.6370) Spectroscopy : Spectroscopy, microwave
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(350.5610) Other areas of optics : Radiation

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: April 6, 2011
Revised Manuscript: May 15, 2011
Manuscript Accepted: May 16, 2011
Published: June 16, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express

Citation
David L. Griscom, "On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set," Opt. Mater. Express 1, 400-412 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-3-400


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Friebele and D. L. Griscom, “Color centers in glass optical fiber waveguides,” in Defects in Glasses - MRS Vol. 61, F.J. Galeener, D.L. Griscom, M.J. Weber, Eds. (Materials Research Society, Pittsburgh, Pa, 1986), pp. 319–331.
  2. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011). [CrossRef]
  3. J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α quartz,” J. Chem. Phys. 69(11), 4876–4884 (1978). [CrossRef]
  4. D. L. Griscom and E. J. Friebele, “Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E’ centers, and a triplet state,” Phys. Rev. B Condens. Matter 34(11), 7524–7533 (1986). [CrossRef] [PubMed]
  5. E. J. Friebele, “Radiation effects,” in Optical Properties of Glass, D.R. Uhlmann, N.J. Kreidl, Eds. (American Ceramic Society, Westerville, OH, 1991), pp. 205–262.
  6. J. S. Hyde, ESR Standard Sample Data (Varian Associates, Palo Alto, CA, 1961).
  7. A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59(9-10), 603–614 (1930). [CrossRef]
  8. E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974). [CrossRef]
  9. D. L. Griscom, E. J. Friebele, and S. P. Mukherjee, “Studies of radiation-induced point defects in silica aerogel monoliths,” Cryst. Latt. Def. Amorph. Mat. 17, 157–163 (1987).
  10. D. L. Griscom, “Self-trapped holes in amorphous silicon dioxide,” Phys. Rev. B Condens. Matter 40(6), 4224–4227 (1989). [CrossRef] [PubMed]
  11. D. L. Griscom, “Electron spin resonance characterization of self-trapped holes in amorphous silicon dioxide,” J. Non-Cryst. Solids 149(1-2), 137–160 (1992). [CrossRef]
  12. D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006). [CrossRef]
  13. Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B 68(1), 014204 (2003). [CrossRef]
  14. D. L. Griscom, “Visible/infra-red absorption study in fiber geometry of metastable defect states in high-purity fused silicas,” Defects in Insulating Materials, G.E. Matthews and R.W. Williams, Eds., Materials Sci. Forum Vols. 239–241, 19–24 (1997).
  15. D. L. Griscom, “γ-ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: Are they due to self-trapped holes?” J. Non-Cryst. Solids 349, 139–147 (2004). [CrossRef]
  16. J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter 52(3), 1661–1665 (1995). [CrossRef] [PubMed]
  17. H. Hosono, M. Mizuguchi, H. Kawazoe, and J. Nishi, “Correlation between Ge E′ centers and optical bands in SiO2:GeO2 glasses,” Jpn. J. Appl. Phys. 35, L234–L236 (1996). [CrossRef]
  18. K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9 mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Jpn. J. Appl. Phys. 27(Part 2, No. 2), L240–L243 (1988). [CrossRef]
  19. E. V. Anoikin, A. N. Guryanov, D. D. Gusovskii, V. M. Mashinskii, S. I. Miroshnichenko, V. B. Nuestruev, V. A. Tikhomirov, and Yu. B. Zverev, “Photonic defects in silica glass doped with germanium and cerium,” Sov. Lightwave Commun. 1, 123–131 (1991).
  20. M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical fiber gratings,” Phys. Rev. B 57(7), 3920–3926 (1998). [CrossRef]
  21. S. Agnello, R. Boscaino, M. Canas, F. M. Gelardi, F. La Mattina, S. Grandi, and A. Magistris, “Ge related centers induced by gamma irradiation in sol-gel Ge-doped silica,” J. Non-Cryst. Solids 322(1-3), 134–138 (2003). [CrossRef]
  22. A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express . in press. [PubMed]
  23. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992). [CrossRef] [PubMed]
  24. J. Nishii, K. Kintaka, H. Hosono, H. Kawazoe, M. Kato, and K.- Muta, “Pair generation of Ge electron centers and self-trapped hole centers in GeO2-SiO2 glasses by KrF excimer-laser irradiation,” Phys. Rev. B 60(10), 7166–7169 (1999). [CrossRef]
  25. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998). [CrossRef]
  26. A. N. Trukhin, J. Troks, and D. L. Griscom, “Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica,” J. Non-Cryst. Solids 353(16-17), 1560–1566 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited