OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 413–427

Highly bismuth-substituted, record-performance magneto-optic garnet materials with low coercivity for applications in integrated optics, photonic crystals, imaging and sensing

Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, and Kamal Alameh  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 3, pp. 413-427 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication of radio frequency (RF) sputtered Bi-substituted lutetium iron garnet films doped with aluminum and the results of adjusting the properties of these films by means of co-sputtering deposition using an additional bismuth oxide target. Very attractive optical, magnetic and magneto-optical properties are achieved in these new magneto-optic materials. The high-performance magnetically-soft thin-film engineered materials synthesized have a wide range of potential applications in next-generation integrated optics, magneto-photonics and magnetic field sensors.

© 2011 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.3820) Materials : Magneto-optical materials
(310.3840) Thin films : Materials and process characterization

ToC Category:
Thin Films

Original Manuscript: May 13, 2011
Revised Manuscript: June 8, 2011
Manuscript Accepted: June 12, 2011
Published: June 17, 2011

Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, and Kamal Alameh, "Highly bismuth-substituted, record-performance magneto-optic garnet materials with low coercivity for applications in integrated optics, photonic crystals, imaging and sensing," Opt. Mater. Express 1, 413-427 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Zvezdin and V. A. Kotov, in Modern Magnetooptics and Magnetooptical Materials (Bristol, Institute of Physics Publishing, and Philadelphia), ISBN 075030362X, 1997.
  2. C. F. Buhrer, “Faraday Rotation and Dichroism of Bismuth Calcium Vanadium Iron Garnet,” J. Appl. Phys. 40(11), 4500–4502 (1969). [CrossRef]
  3. G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976). [CrossRef]
  4. T. Hibiya, Y. Morishige, and J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jpn. J. Appl. Phys. 24, 1316–1319 (1985). [CrossRef]
  5. T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in Magneto-Optics, Proc. Int. Symp. Magneto-Optics, J. Magn. Soc. Jpn. 11, Supplement S1, 179–182 (1987).
  6. Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).
  7. Y. Okamura, T. Kawakami, and S. Yamamoto, “Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates,” J. Appl. Phys. 81(8), 5653–5655 (1997). [CrossRef]
  8. M. Gomi, T. Tanida, and M. Abe, “RF Sputtering of Highly Bi-substituted Garnet Films on Glass Substrates for Magneto-Optic Memory,” J. Appl. Phys. 57(8), 3888–3890 (1985). [CrossRef]
  9. S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007). [CrossRef]
  10. S. Kahl, A. M. Grishin, S. I. Khartsev, K. Kawano, and J. S. Abell, “Bi3Fe5O12 Thin Film Visualizer,” IEEE Trans. Magn. 37(4), 2457–2459 (2001). [CrossRef]
  11. M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009). [CrossRef]
  12. A. K. Bandyopadhyay, S. E. Rios, S. Fritz, J. Garcia, J. Contreras, and C. J. Gutierrez, “Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications,” IEEE Trans. Magn. 40(4), 2805–2807 (2004). [CrossRef]
  13. M. Vasiliev, M. N. Alam, V. A. Kotov, K. Alameh, V. I. Belotelov, V. I. Burkov, and A. K. Zvezdin, “RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region,” Opt. Express 17(22), 19519–19535 (2009). [CrossRef] [PubMed]
  14. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, “Magnetic photonic crystals,” J. Phys. D Appl. Phys. 36(18), R277–R287 (2003). [CrossRef]
  15. M. Vasiliev, K. Alameh, V. Belotelov, V. A. Kotov, and A. K. Zvezdin, ““Magnetic Photonic Crystals: 1-D Optimization and Applications for the Integrated Optics Devices,” IEEE/OSA,” J. Lightwave Technol. 24(5), 2156–2162 (2006). [CrossRef]
  16. M. J. Steel, M. Levy, and R. M. Osgood, “High Transmission Enhanced Faraday Rotation in One-Dimensional Photonic Crystals with Defects,” IEEE Photon. Technol. Lett. 12(9), 1171–1173 (2000). [CrossRef]
  17. M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel Magnetic Photonic Crystal Structures for Magnetic Field Sensors and Visualizers,” IEEE Trans. Magn. 44(3), 323–328 (2008). [CrossRef]
  18. M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths,” Opt. Quantum Electron. 41(9), 661–669 (2009). [CrossRef]
  19. P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fischer, “Colloidal transport on magnetic garnet films,” Phys. Chem. Chem. Phys. 11(42), 9615–9625 (2009). [CrossRef] [PubMed]
  20. A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, “Asymmetrical two-dimensional magnetic lattices for ultracold atoms,” Phys. Rev. A 82(1), 012320 (2010). [CrossRef]
  21. A. H. Eschenfelder, Magnetic Bubble Technology (Springer-Verlag, New York, ISBN 3–540–09822–4), 1980.
  22. N. Adachi, K. Obata, T. Okuda, T. Machi, and N. Koshizuka, “Synthesis of Bi-Lu-substituted Iron Garnet Films for Visualization of Magnetic Flux in High-Tc Superconductors,” Jpn. J. Appl. Phys. 41 (Part1, 10), 5986–5990 (2002).
  23. M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011). [CrossRef]
  24. J. P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986). [CrossRef]
  25. T. Mizumoto, S. Mashimo, T. Ida, and Y. Naito, “In-plane Magnetized Rare Earth Iron Garnet for a Waveguide Optical Isolator Employing Nonreciprocal Phase Shift,” IEEE Trans. Magn. 29(6), 3417–3419 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited