OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 451–457

Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition

Sung Jun Jang, Young Min Song, Chan Il Yeo, Chang Young Park, and Yong Tak Lee  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 3, pp. 451-457 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a highly tolerant and highly reflective broadband a-Si distributed Bragg reflector fabricated by oblique angle deposition. By tuning the refractive index of an a-Si film, a high index contrast material system was achieved. The highly tolerant and broadband reflective characteristics of the a-Si distributed Bragg reflector were investigated by calculation and fabrication. A broad stop band (Δλ/λ = 33.7%, R>99%) with only a five-pair a-Si distributed Bragg reflector was achieved experimentally. The size-, feature- and substrate-independent method for highly reflective Bragg reflectors was realized by simple oblique angle evaporation.

© 2011 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Thin Films

Original Manuscript: April 20, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 22, 2011
Published: June 24, 2011

Sung Jun Jang, Young Min Song, Chan Il Yeo, Chang Young Park, and Yong Tak Lee, "Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition," Opt. Mater. Express 1, 451-457 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Y. Huang, Y. Zhou, and C. J. Chang-hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007). [CrossRef]
  2. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008). [CrossRef]
  3. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006). [CrossRef] [PubMed]
  4. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29(21), 2551–2553 (2004). [CrossRef] [PubMed]
  5. J. Boucart, C. Starck, F. Gaborit, A. Plais, N. Bouche, E. Derouin, J. C. Remy, J. Bonnet-Gamard, L. Goldstein, C. Fortin, D. Carpentier, P. Salet, F. Brillouet, and J. Jacquet, “Metamorphic DBR and tunnel-junction injection: A CW RT monolithic long-wavelength VCSEL,” IEEE J. Sel. Top. Quantum Electron. 5(3), 520–529 (1999). [CrossRef]
  6. D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kartner, and E. P. Ippen, “Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser,” Opt. Commun. 214(1-6), 285–289 (2002). [CrossRef]
  7. E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63(19), 2603–2605 (1993). [CrossRef]
  8. Y. H. Lin, C. L. Wu, Y. H. Pai, and G. R. Lin, “A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector,” Opt. Express 19(7), 6563–6570 (2011). [CrossRef] [PubMed]
  9. G. Zalczer, O. Thomas, J. P. Piel, and J. L. Stehle, “IR spectroscopic ellipsometry: instrumentation and applications in semiconductors,” Thin Solid Films 234(1-2), 356–362 (1993). [CrossRef]
  10. C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. 67(20), 2983–2985 (1995). [CrossRef]
  11. M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008). [CrossRef] [PubMed]
  12. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  13. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006). [CrossRef]
  14. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007). [CrossRef]
  15. M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006). [CrossRef]
  16. Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(09), 2500–2505 (2008). [CrossRef]
  17. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997). [CrossRef]
  18. S. J. Jang, Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. 205, S447–S450 (2010). [CrossRef]
  19. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1-3), 1–126 (2000). [CrossRef]
  20. J. P. Singh, T. Karabacak, D.-X. Ye, D.-L. Liu, C. Picu, T.-M. Lu, and G.-C. Wang, “Physical properties of nanostructures grown by oblique angle deposition,” J. Vac. Sci. Technol. B 23(5), 2114–2121 (2005). [CrossRef]
  21. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010). [CrossRef] [PubMed]
  22. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008). [CrossRef]
  23. J. Fan, J. Fu, A. Collins, and Y. Zhao, “The effect of the shape of nanorod arrays on the nanocarpet effect,” Nanotechnology 19(4), 045713–045721 (2008). [CrossRef]
  24. S. J. Jang, Y. M. Song, J. S. Yu, C. I. Yeo, and Y. T. Lee, “Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers,” Opt. Lett. 36(2), 253–255 (2011). [CrossRef] [PubMed]
  25. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-Si solar cell structures with graded refractive index structure,” Opt. Express 19(S2Suppl 2), A108–A117 (2011). [CrossRef] [PubMed]
  26. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004). [CrossRef]
  27. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006). [CrossRef]
  28. O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrate,” Appl. Phys. Lett. 66(3), 329–331 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited