OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 458–465

Temperature-dependent visible to near-infrared optical properties of 8 mol% Mg-doped lithium tantalate

Konstantinos Moutzouris, George Hloupis, Ilias Stavrakas, Dimos Triantis, and Ming-Hsien Chou  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 3, pp. 458-465 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the experimental determination of the ordinary and extraordinary refractive index of 8 mol% Mg-doped congruent lithium tantalate (MCLT). Refractive index measurements cover a spectral range from 450nm to 1550nm and temperatures varying from 22°C to 200°C. Experimental data are fitted to a temperature-dependent dispersion relation that has not been previously used with this material family. Based on this relation, various optical properties of MCLT are calculated, including thermo-optic coefficient, group velocity dispersion, phase matching curve and temporal walk-off. In an additional quasi-phase-matching second-harmonic-generation experiment it is shown that the proposed dispersion relation may be used to predict grating period with remarkable nanometer-scale accuracy.

© 2011 OSA

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.4330) Materials : Nonlinear optical materials
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optical Materials

Original Manuscript: May 20, 2011
Revised Manuscript: June 18, 2011
Manuscript Accepted: June 18, 2011
Published: June 28, 2011

Konstantinos Moutzouris, George Hloupis, Ilias Stavrakas, Dimos Triantis, and Ming-Hsien Chou, "Temperature-dependent visible to near-infrared optical properties of 8 mol% Mg-doped lithium tantalate," Opt. Mater. Express 1, 458-465 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, “Quasi phase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides,” Electron. Lett. 27(22), 2040–2042 (1991). [CrossRef]
  2. K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO(3),” Opt. Lett. 21(2), 107–109 (1996). [CrossRef] [PubMed]
  3. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997). [CrossRef] [PubMed]
  4. M. E. Klein, D. H. Lee, J. P. Meyn, B. Beier, K. J. Boller, and R. Wallenstein, “Diode-pumped continuous-wave widely tunable optical parametric oscillator based on periodically poled lithium tantalate,” Opt. Lett. 23(11), 831–833 (1998). [CrossRef] [PubMed]
  5. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb--Er-seeded fiber source,” Opt. Lett. 25(17), 1252–1254 (2000). [CrossRef] [PubMed]
  6. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3),” Opt. Lett. 25(9), 651–653 (2000). [CrossRef] [PubMed]
  7. A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004). [CrossRef]
  8. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29(10), 1111–1113 (2004). [CrossRef] [PubMed]
  9. S. Y. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30(18), 2451–2453 (2005). [CrossRef] [PubMed]
  10. W. B. Cho, K. Kim, H. Lim, J. Lee, S. Kurimura, and F. Rotermund, “Multikilohertz optical parametric chirped pulse amplification in periodically poled stoichiometric LiTaO3 at 1235 nm,” Opt. Lett. 32(19), 2828–2830 (2007). [CrossRef] [PubMed]
  11. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32(4), 400–402 (2007). [CrossRef] [PubMed]
  12. S. Y. Tu, A. H. Kung, S. Kurimura, and T. Ikegami, “Broadly tunable ultraviolet light generation in a compact MgO-doped periodically-poled stoichiometric lithium tantalate optical parametric oscillator with a high-Q cavity,” Appl. Opt. 47(31), 5762–5766 (2008). [CrossRef] [PubMed]
  13. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33(4), 408–410 (2008). [CrossRef] [PubMed]
  14. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009). [CrossRef] [PubMed]
  15. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18(1), 253–258 (2010). [CrossRef]
  16. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95(8), 081111 (2009). [CrossRef]
  17. M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3,” Opt. Express 19(5), 4121–4128 (2011). [CrossRef] [PubMed]
  18. W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965). [CrossRef]
  19. H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, “Refractive indices of LiTaO3 at high temperatures,” Jpn. J. Appl. Phys. 7(2), 185–186 (1968). [CrossRef]
  20. K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80(11), 6561–6563 (1996). [CrossRef]
  21. A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE 4628, 66–73 (2002). [CrossRef]
  22. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003). [CrossRef] [PubMed]
  23. F. Juvalta, M. Jazbinsek, P. Günter, and K. Kitamura, “Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths,” J. Opt. Soc. Am. B 23(2), 276–281 (2006). [CrossRef]
  24. V. Z. Kolev, M. W. Duering, and B. Luther-Davies, “Corrections to refractive index data of stoichiometric lithium tantalate in the 5-6 microm range,” Opt. Lett. 31(13), 2033–2035 (2006). [CrossRef] [PubMed]
  25. N. A. Barboza and R. S. Cudney, “Improved Sellmeier equation for congruently grown lithium tantalate,” Appl. Phys. B 95(3), 453–458 (2009), doi:. [CrossRef]
  26. W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-dependent Sellmeier equation for 1.0mol% Mg-doped stoichiometric lithium tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008). [CrossRef]
  27. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2-3), 423–432 (2009). [CrossRef]
  28. K. Moutzouris, I. Stavrakas, D. Triantis, and M. Enculescu, “Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared,” Opt. Mater. 33(6), 812–816 (2011). [CrossRef]
  29. R. L. Byer, “Quasi-phasematched nonlinear interaction and devices,” J. Nonlinear Opt. Phys. Mater. 6(4), 549–591 (1997). [CrossRef]
  30. Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. 40(11), 4637–4641 (1969). [CrossRef]
  31. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited