OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 466–479

Broadband circularly-polarized infrared emission from multilayer metamaterials

Samuel L. Wadsworth, Paul G. Clem, Eric D. Branson, and Glenn D. Boreman  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 3, pp. 466-479 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Development of a 2D metamaterial that preferentially emits broadband circularly-polarized (CP) infrared radiation is hindered by the fact that orthogonal electric-field components are uncorrelated at the surface of the thermal emitter, a consequence of the fluctuation-dissipation theorem. We achieve broadband CP thermal emission by fabricating a meanderline quarter-wave retarder on a transparent thermal-isolation layer. Behind this isolation layer, in thermal contact with the emitter, is a wire-grid polarizer. Along with an unavoidable linear polarized radiation characteristic from the meanderline, we measured a degree of circular polarization (DOCP) of 28%, averaged over the 8- to 12 μm band.

© 2011 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.5620) Coherence and statistical optics : Radiative transfer
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization
(350.5610) Other areas of optics : Radiation
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: June 2, 2011
Revised Manuscript: June 20, 2011
Manuscript Accepted: June 21, 2011
Published: June 28, 2011

Samuel L. Wadsworth, Paul G. Clem, Eric D. Branson, and Glenn D. Boreman, "Broadband circularly-polarized infrared emission from multilayer metamaterials," Opt. Mater. Express 1, 466-479 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008). [CrossRef] [PubMed]
  2. J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997). [CrossRef]
  3. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005). [CrossRef]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988). [CrossRef] [PubMed]
  5. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005). [CrossRef] [PubMed]
  6. V. Demir, I. E. Araci, A. Kropachev, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Nanoamorphous carbon as a blackbody source in plasmonic thermal emitters,” Appl. Opt. 50(2), 218–221 (2011). [CrossRef] [PubMed]
  7. Y. Ueba, J. Takahara, and T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36(6), 909–911 (2011). [CrossRef] [PubMed]
  8. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Extraordinary coherent thermal emission from SiC due to coupled resonant cavities,” J. Heat Transfer 130(11), 112401 (2008). [CrossRef]
  9. T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in near fields of thermal sources: effects of surface waves,” Phys. Rev. Lett. 88(12), 123902 (2002). [CrossRef] [PubMed]
  10. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000). [CrossRef] [PubMed]
  11. M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett. 96(12), 123903 (2006). [CrossRef] [PubMed]
  12. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007). [CrossRef]
  13. M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005). [CrossRef]
  14. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005). [CrossRef]
  15. M. Garín, T. Trifonov, D. Hernández, A. Rodriguez, and R. Alcubilla, “Thermal emission of macroporous silicon chirped photonic crystals,” Opt. Lett. 35(20), 3348–3350 (2010). [CrossRef] [PubMed]
  16. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006). [CrossRef] [PubMed]
  17. S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000). [CrossRef]
  18. N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005). [CrossRef]
  19. J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3244–3247 (2008). [CrossRef]
  20. J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007). [CrossRef]
  21. O. G. Kollyukh, A. I. Liptuga, V. Morozhenko, V. I. Pipa, and E. F. Venger, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007). [CrossRef]
  22. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999). [CrossRef]
  23. M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009). [CrossRef]
  24. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999). [CrossRef] [PubMed]
  25. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express 18(5), 4557–4563 (2010). [CrossRef] [PubMed]
  26. D. Goldstein, Polarized Light, (Marcel Dekker, 2003).
  27. E. C. Zimmermann and A. Dalcher, “Incoherent radiative properties of an opaque body,” J. Opt. Soc. Am. A 8(12), 1947–1954 (1991). [CrossRef]
  28. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge, 1995).
  29. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge, 2006).
  30. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3: Elements of Random Fields, (Springer-Verlag, 1989).
  31. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon Press, 1960).
  32. G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11(1), 230–242 (1975). [CrossRef]
  33. C. Henkel, K. Joulain, R. Carminati, and J.-J. Greffet, “Spatial coherence of thermal near fields,” Opt. Commun. 186(1-3), 57–67 (2000). [CrossRef]
  34. N. R. Labadie and S. K. Sharma, “A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion,” Metamaterials (Amst.) 4(1), 44–57 (2010). [CrossRef]
  35. A. Resnick, C. Persons, and G. Lindquist, “Polarized emissivity and Kirchhoff’s law,” Appl. Opt. 38(8), 1384–1387 (1999). [CrossRef] [PubMed]
  36. J. J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law,” J. Opt. Soc. Am. A 15(10), 2735–2744 (1998). [CrossRef]
  37. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves. Theories and Applications, (J. Wiley, 2000).
  38. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006). [CrossRef] [PubMed]
  39. S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18(13), 13345–13360 (2010). [CrossRef] [PubMed]
  40. M. Schmidt and F. Schwertfeger, “Applications for silica aerogel products,” J. Non-Cryst. Solids 225, 364–368 (1998). [CrossRef]
  41. L. W. Hrubesh and R. W. Pekala, “Thermal properties of organic and inorganic aerogels,” J. Mater. Res. 9(3), 731–738 (1994). [CrossRef]
  42. J. A. Ruffner, P. G. Clem, B. A. Tuttle, C. J. Brinker, C. S. Sriram, and J. A. Bullington, “Uncooled thin film infrared imaging device with aerogel thermal isolation: deposition and planarization techniques,” Thin Solid Films 332(1-2), 356–361 (1998). [CrossRef]
  43. P. E. Hopkins, B. Kaehr, L. M. Phinney, T. P. Koehler, A. M. Grillet, D. Dunphy, F. Garcia, and C. J. Brinker, “Measuring the thermal conductivity of porous, transparent SiO2 films with time domain thermoreflectance,” J. Heat Transfer 133(6), 061601 (2011). [CrossRef]
  44. P. E. Hopkins, B. Kaehr, E. S. Piekos, D. Dunphy, and C. J. Brinker, “Minimum thermal conductivity considerations in aerogel thin films,” manuscript in preparation (2011).
  45. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited