OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 514–522

Variation of the stimulated emission cross section in Nd:YAG caused by the structural changes of Russell-Saunders manifolds

Yoichi Sato and Takunori Taira  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 3, pp. 514-522 (2011)
http://dx.doi.org/10.1364/OME.1.000514


View Full Text Article

Enhanced HTML    Acrobat PDF (1391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It was experimentally found that electronic structures of Russell-Saunders manifolds in Nd:YAG depended on the Nd3+-doping concentration (CNd) and its fabrication process. Both of the bandwidth and the branching ratio in fluorescent transitions in Nd:YAG varied almost linearly depending on CNd, and a fabrication process has its own diluted limit of the bandwidth and the branching ratio. Also dependences of Stark splitting in Nd:YAG were also observed. Nd3+-doping causes 1.9% and 4.5% reduction in the stimulated emission cross section of Nd:YAG per 1at.% of CNd at 1.064 μm and 1.319 μm, respectively.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3530) Lasers and laser optics : Lasers, neodymium

ToC Category:
Laser Materials

History
Original Manuscript: April 20, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 17, 2011
Published: June 30, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express

Citation
Yoichi Sato and Takunori Taira, "Variation of the stimulated emission cross section in Nd:YAG caused by the structural changes of Russell-Saunders manifolds," Opt. Mater. Express 1, 514-522 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-3-514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Kaminskii, M. S. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]
  2. R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid-state laser,” Proceedings of OSA Topical meeting on Advanced Solid-State Photonics 2008, WC5, Nara, Japan (Jan. 2008).
  3. S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Proceedings of Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS, CThA1, Baltimore, MA, USA (2009).
  4. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000). [CrossRef]
  5. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001). [CrossRef]
  6. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953). [CrossRef]
  7. T. Förster, “Intermolecular energy migration and fluorescence,” Ann. Phys. 2, 55–75 (1948).
  8. Y. Sato, T. Taira, and A. Ikesue, “A study on influences of Nd3+-doping concentration upon spectroscopic properties of Nd:Y3Al5O12 ceramics,” in Proceedings of OSA Topical meeting on Advanced Solid-State Photonics 2009, WB18, Denver, CO, USA (Feb. 2009).
  9. F. S. Ermeneux, C. Goutaudier, R. Moncorge, M. T. Cohen-Adad, M. Bettinelli, and E. Cavalli, “Comparative optical characterization of various Nd3+:YVO4 single crystals,” Opt. Mater. 13(2), 193–204 (1999). [CrossRef]
  10. T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969). [CrossRef]
  11. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. 31(5), 720–724 (2009). [CrossRef]
  12. T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167(2), 289–291 (1968). [CrossRef]
  13. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007). [CrossRef]
  14. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]
  15. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]
  16. A. Blumen and J. Manz, “On the concentration and time dependence of the energy transfer to randomly distributed acceptors,” J. Chem. Phys. 71(11), 4694–4702 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited