OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 543–550

Femtosecond laser delamination of thin transparent layers from semiconducting substrates

Tino Rublack and Gerhard Seifert  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 543-550 (2011)
http://dx.doi.org/10.1364/OME.1.000543


View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transparent dielectric layers of typically 100 nm thickness can be delaminated from strongly absorbing, semiconducting substrates selectively and without noticeable damage at the opened surface by irradiation with fs laser pulses at photon energies above the semiconductor band gap. We have studied this very special ablation process on silicon wafers coated by SiO2, SixNy and Al2O3, using pulse durations from 50 fs to 2000 fs, and the laser wavelengths 1030, 800, 515, and 400 nm. By help of a precise determination of ablation thresholds and detailed inspection of ablation craters by optical and atomic force microscopy, we conclude that a very short penetration depth of the laser light due to charge carriers generated in the silicon by the pulse itself is the key for the quasi damage-free delamination process.

© 2011 OSA

OCIS Codes
(310.0310) Thin films : Thin films
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Thin Films

History
Original Manuscript: June 2, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: July 1, 2011
Published: July 6, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
Tino Rublack and Gerhard Seifert, "Femtosecond laser delamination of thin transparent layers from semiconducting substrates [Invited]," Opt. Mater. Express 1, 543-550 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-543


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]
  2. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  3. D. Ashkenasi, G. Müller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Fundamentals and advantages of ultrafast micro-structuring of transparent materials,” Appl. Phys., A Mater. Sci. Process. 77, 223–228 (2003).
  4. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997). [CrossRef]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  6. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008). [CrossRef]
  7. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006). [CrossRef] [PubMed]
  8. U. K. Tirlapur and K. König, “Cell biology: targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002). [CrossRef] [PubMed]
  9. A. Stalmashonak, C. Matyssek, O. Kiriyenko, W. Hergert, H. Graener, and G. Seifert, “Preparing large-aspect-ratio prolate metal nanoparticles in glass by simultaneous femtosecond multicolor irradiation,” Opt. Lett. 35(10), 1671–1673 (2010). [CrossRef] [PubMed]
  10. M. Miclea, U. Skrzypczak, F. Fankhauser, S. Faust, H. Graener, and G. Seifert, “Applanation-free femtosecond laser processing of the cornea,” Biomed. Opt. Express 2(3), 534–542 (2011). [CrossRef] [PubMed]
  11. T. Rublack, S. Hartnauer, P. Kappe, C. Swiatkowski, and G. Seifert, “Selective ablation of thin SiO2 layers on silicon substrates by femto- and picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 103(1), 43–50 (2011). [CrossRef]
  12. S. Hermann, N.-P. Harder, R. Brendel, D. Herzog, and H. Haferkamp, “Picosecond laser ablation of SiO2 layers on silicon substrates,” Appl. Phys., A Mater. Sci. Process. 99(1), 151–158 (2010). [CrossRef]
  13. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  14. T. Rublack, M. Muchow, S. Hartnauer, and G. Seifert, “Laser ablation of silicon dioxide on silicon using femtosecond near infrared laser pulses,” Energy Procedia (to be published).
  15. C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond optical-pulse-induced pase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983). [CrossRef]
  16. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000). [CrossRef]
  17. M. A. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited