OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 551–563

Rapid, broadband two-photon-excited fluorescence spectroscopy and its application to red-emitting secondary reference compounds

Nikolay S. Makarov, Jochen Campo, Joel M. Hales, and Joseph W. Perry  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 4, pp. 551-563 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a methodology for rapidly acquiring broadband two-photon absorption (2PA) spectra by means of a compact two-channel femtosecond fluorescence excitation apparatus. This technique is insensitive to differences in excitation and collection geometries as well as detection efficiencies between the sample and reference, in addition to variations in average power, pulse duration and spatial beam profile, as it utilizes sequential measurement of the sample and reference in each of the two cell positions. Our approach eliminates the need to determine the fluorescence quantum yields of the sample and reference, as it allows measurement of emission from samples at a common specified wavelength. These attributes allow for acquisition of 2PA spectra with an estimated accuracy of ± 15% (limited almost exclusively by the uncertainty in the 2PA cross section for the reference standards) over an excitation range of 550-1600 nanometers with a typical time per spectrum of ~30-60 minutes. We have applied this technique to determine the 2PA spectra of six commercially available organic dyes over a wide range of excitation wavelengths (670-1600 nm), which can be used as secondary reference standards emitting in the red and near-infrared spectral region (600-1000 nm). We have also characterized some of these compounds using the femtosecond-pulsed Z-scan method and found very good agreement with the fluorescence-based measurements.

© 2011 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Nonlinear Optical Materials

Original Manuscript: May 3, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: June 30, 2011
Published: July 7, 2011

Nikolay S. Makarov, Jochen Campo, Joel M. Hales, and Joseph W. Perry, "Rapid, broadband two-photon-excited fluorescence spectroscopy and its application to red-emitting secondary reference compounds," Opt. Mater. Express 1, 551-563 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989). [CrossRef] [PubMed]
  2. N. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B 24(8), 1874–1885 (2007) (and references therein). [CrossRef]
  3. J. H. Strickler and W. W. Webb, “3-D optical data storage by two-photon excitation,” Adv. Mater. (Deerfield Beach Fla.) 5(6), 479–481 (1993). [CrossRef]
  4. R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, “Protein-based three-dimensional memories and associative processors,” in Molecular Electronics, M.A. Ratner and J. Jortner, eds. (Blackwell Science, 1997).
  5. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000). [CrossRef] [PubMed]
  6. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Laser Med. Surg. 15(5), 201–204 (1997). [PubMed]
  7. A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7(6), 971–975 (2001). [CrossRef]
  8. H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, and H. L. Anderson, “Blood-vessel closure using photosensitizers engineered for two-photon excitation,” Nat. Photonics 2(7), 420–424 (2008). [CrossRef]
  9. J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney, and C. W. Spangler, “New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse,” Clin. Cancer Res. 14(20), 6564–6573 (2008). [CrossRef] [PubMed]
  10. T. Karu and V. Letokhov, “Possible benefits of two-quantum excitation in ALA-PDT?” J. Photochem. Photobiol. B 23(2-3), 261–262 (1994). [CrossRef] [PubMed]
  11. D. Leupold and I. E. Kochevar, “Multiphoton photochemistry in biological systems. Introduction,” Photochem. Photobiol. 66(5), 562–565 (1997). [CrossRef]
  12. D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6(11), 2383–2386 (2006). [CrossRef] [PubMed]
  13. C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9(9), 2013–2020 (1999). [CrossRef]
  14. J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express 17(21), 18478–18488 (2009). [CrossRef] [PubMed]
  15. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67(17), 2433–2435 (1995). [CrossRef]
  16. D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38(24), 5168–5180 (1999). [CrossRef] [PubMed]
  17. J. Oberlé, L. Bramerie, G. Jonusauskas, and C. Rullière, “Optical-limiting properties of a push-pull diphenyl-butadiene,” Opt. Commun. 169(1–6), 325–332 (1999). [CrossRef]
  18. Y. Morel, A. Ibanez, C. Nguefack, C. Andraud, A. Collet, J.-F. Nicoud, and P. L. Baldeck, “Nonlinear absorption spectra of transparent organic crystals for optical limiting applications at visible wavelengths,” Synth. Met. 115(1–3), 265–268 (2000). [CrossRef]
  19. J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997). [CrossRef] [PubMed]
  20. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  21. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009). [CrossRef] [PubMed]
  22. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997). [CrossRef] [PubMed]
  23. R. Gauderon and C. J. R. Sheppard, “Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy,” Appl. Opt. 38(16), 3562–3565 (1999). [CrossRef] [PubMed]
  24. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000). [CrossRef] [PubMed]
  25. Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: shedding light on the chemistry of vision,” Biochemistry 46(34), 9674–9684 (2007). [CrossRef] [PubMed]
  26. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999). [CrossRef]
  27. S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998). [CrossRef]
  28. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. V. Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13(12), 837–849 (2000). [CrossRef]
  29. H.-B. Sun, T. Kawakami, Y. Xu, J.-Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt. Lett. 25(15), 1110–1112 (2000). [CrossRef] [PubMed]
  30. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001). [CrossRef]
  31. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002). [CrossRef] [PubMed]
  32. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  33. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008). [CrossRef] [PubMed]
  34. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996). [CrossRef]
  35. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998). [CrossRef] [PubMed]
  36. D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12(9), 631–641 (2002). [CrossRef]
  37. M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281(5383), 1653–1656 (1998). [CrossRef] [PubMed]
  38. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Y. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000). [CrossRef]
  39. M. Rumi, S. J. K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S. R. Marder, and J. W. Perry, “Tetrastyrylarene derivatives: comparison of one- and two-photon spectroscopic properties with distyrylarene analogues,” J. Phys. Chem. C 112(21), 8061–8071 (2008). [CrossRef]
  40. M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon. 2(4), 451–518 (2010). [CrossRef]
  41. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010). [CrossRef] [PubMed]
  42. H.-C. Lin, H. Kim, S. Barlow, J. M. Hales, J. W. Perry, and S. R. Marder, “Synthesis and linear and nonlinear optical properties of metal-terminated bis(dioxaborine) polymethines,” Chem. Commun. (Camb.) 47(2), 782–784 (2010). [CrossRef] [PubMed]
  43. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Color hues in red fluorescent proteins are due to internal quadratic Stark effect,” J. Phys. Chem. B 113(39), 12860–12864 (2009). [CrossRef] [PubMed]
  44. K. D. Belfield, S. Yao, and M. V. Bondar, “Organic multiphoton absorbing materials and devices,” in Introduction to Organic Electronic and Optoelectronic Materials and Devices, S.-S. Sun and L.R. Dalton, eds. (CRC Press, 2008), pp. 573–606.
  45. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, “Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122(39), 9500–9510 (2000). [CrossRef]
  46. S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One- and two-photon spectroscopy of donor-acceptor-donor di(styryl)benzene derivatives: Effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002). [CrossRef]
  47. S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Extended squaraine dyes with large two-photon absorption cross-sections,” J. Am. Chem. Soc. 128(45), 14444–14445 (2006). [CrossRef] [PubMed]
  48. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010). [CrossRef] [PubMed]
  49. N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE 7049, 70490Y (2008). [CrossRef]
  50. M. Faraggi, P. Peretz, I. Rosenthal, and D. Weinraub, “Solution properties of dye lasers. Rhodamine B in alcohols,” Chem. Phys. Lett. 103(4), 310–314 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited