OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 564–575

Performance of ultrafast laser written active waveguides by rigorous modeling of optical gain measurements

J.A. Vallés, A. Ferrer, J. M. Fernández-Navarro, V. Berdejo, A. Ruiz de la Cruz, Inés Ortega-Feliu, M.Á. Rebolledo, and J. Solís  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 564-575 (2011)
http://dx.doi.org/10.1364/OME.1.000564


View Full Text Article

Enhanced HTML    Acrobat PDF (1184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An Er:Yb co-doped P2O5-La2O5 based glass has been synthesized and used for producing 1.6 cm-long active optical waveguides using a low repetition (1 kHz) rate Ti:Al2O3 fs-laser amplifier. Before processing, the laser energy deposition profile for an elliptically shaped beam was simulated, and the best processing conditions for optimizing the focal volume shape, minimizing non-linear propagation effects, were determined. Under these conditions, a multi-scan writing approach was used to maximize the refractive index change induced and to minimize the transmission losses. After processing, the optical powers propagating inside the waveguide (pump absorption, co- and counter-propagating ASE, low signal gain, …) were measured for uni- and bi-directional pumping schemes, and the measurements were simulated and fitted using an ad hoc developed model to describe the behavior of laser written waveguides. The measurements provide internal gain figures comparable to the best ones reported in phosphate glasses for low repetition rate writing even with larger insertion losses. The simulations provide access to key parameters of the waveguide characteristics (coupling losses and propagation losses, Yb3+ ⇔ Er3+ energy transfer rates, Er3+ upconversion coefficient), which have been used to model the expected performance of these structures in terms of length and doping level. A moderate increase of the Er3+ and Yb3+ doping level would potentially lead to net gain values up to 9.4 dB for a waveguide length of 25 mm.

© 2011 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(140.3390) Lasers and laser optics : Laser materials processing
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2750) Materials : Glass and other amorphous materials
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Artificially Engineered Structures

History
Original Manuscript: April 6, 2011
Revised Manuscript: June 22, 2011
Manuscript Accepted: July 1, 2011
Published: July 11, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
J.A. Vallés, A. Ferrer, J. M. Fernández-Navarro, V. Berdejo, A. Ruiz de la Cruz, Inés Ortega-Feliu, M.Á. Rebolledo, and J. Solís, "Performance of ultrafast laser written active waveguides by rigorous modeling of optical gain measurements," Opt. Mater. Express 1, 564-575 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26(19), 1516–1518 (2001). [CrossRef] [PubMed]
  3. M. Pospiech, M. Emons, B. Väckenstedt, G. Palmer, and U. Morgner, “Single-sweep laser writing of 3D-waveguide devices,” Opt. Express 18(7), 6994–7001 (2010). [CrossRef] [PubMed]
  4. R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006). [CrossRef]
  5. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  6. J. A. Vallés, A. Ferrer, J. A. Sánchez-Martin, A. R. de la Cruz, M. A. Rebolledo, and J. Solis, “New Characterization Technique for Femtosecond Laser Written Waveguides in Yb/Er-Codoped Glass,” IEEE J. Quantum Electron. 46(6), 996–1002 (2010). [CrossRef]
  7. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264(1-2), 318–341 (2000). [CrossRef]
  8. R. K. Brow, E. Metwalli, and D. L. Sidebottom, “Properties and Structure of Lanthanum Phosphate Glasses,” Proc. SPIE 4102, 88–94 (2000). [CrossRef]
  9. M. Karabulut, E. Metwalli, and R. K. Brow, “Structure and properties of lanthanum-aluminum-phosphate glasses,” J. Non-Cryst. Solids 283(1-3), 211–219 (2001). [CrossRef]
  10. Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009). [CrossRef]
  11. R. A. Martin and J. C. Knight, “Silica-Clad Neodymium-Doped Lanthanum Phosphate Fibers and Fiber Lasers,” IEEE Photon. Technol. Lett. 18(4), 574–576 (2006). [CrossRef]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003). [CrossRef] [PubMed]
  13. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006). [CrossRef] [PubMed]
  14. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109-1–121109-3 (2008). [CrossRef]
  15. A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27(8), 1688–1692 (2010). [CrossRef]
  16. A. K. Mairaj, H. N. Ping Hua, Rutt, and D. W. Hewak, “Fabrication and characterization of continuous wave direct UV (λ=244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass,” J. Lightwave Technol. 20(8), 1578–1584 (2002). [CrossRef]
  17. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008). [CrossRef]
  18. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005). [CrossRef] [PubMed]
  19. J. A. Vallés, M. A. Rebolledo, and J. Cortes, “Full characterization of Er/Yb-codoped phosphate glass waveguides,” IEEE J. Quantum Electron. 42(2), 152–159 (2006). [CrossRef]
  20. J. A. Vallés, M. A. Rebolledo, V. Berdejo, A. Ferrer, A. Ruiz de la Cruz, and J. Solis, “Study of an optimised bidirectional pump scheme for fs-laser written Yb/Er-codoped integrated waveguides,” Opt. Mater. 33(2), 231–235 (2010). [CrossRef]
  21. E. Tanguy, C. Larat, and J. P. Pocholle, “Modelling of the erbium-ytterbium laser,” Opt. Commun. 153(1-3), 172–183 (1998). [CrossRef]
  22. S. Honkanen, T. Ohtsuki, Sh. Jiang, S. I. Najafi, and N. Peyghambarian, “High Er concentration phosphate glasses for planar waveguide amplifiers,” Proc. SPIE 2996, 32–40 (1997). [CrossRef]
  23. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964). [CrossRef]
  24. R. M. Martin and R. S. Quimby, “Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses,” J. Opt. Soc. Am. B 23(9), 1770–1775 (2006). [CrossRef]
  25. B. Majaron, M. Čopič, M. Lukač, and M. Marinček, “Influence of hole burning on laser pumping dynamics and efficiency in Yb:Er phosphate glasses,” Proc. SPIE 2138, 183–190 (1994). [CrossRef]
  26. J. A. Vallés, J. Solis, J. A. Sánchez-Martín, A. Ruiz de la Cruz, M. A. Rebolledo, and A. Ferrer, “Assesment of Rayleigh and non-Rayleigh contributions to the transmission losses in fs-laser written Er/Yb-codoped phosphate glass waveguides,” J. Laser Micro/Nanoeng. 5, 39–42 (2010).
  27. http://www.kigre.com/files/qxdata.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited