OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 576–585

Characteristics of 2-photon ultraviolet laser etching of diamond

R. P. Mildren, J. E. Downes, J. D. Brown, B. F. Johnston, E. Granados, D. J. Spence, A. Lehmann, L. Weston, and A. Bramble  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 576-585 (2011)
http://dx.doi.org/10.1364/OME.1.000576


View Full Text Article

Enhanced HTML    Acrobat PDF (1097 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report graphite-free laser etching of diamond surfaces using 266 nm laser pulses for a wide range of incident fluences below the threshold for ablation. The etching rate is proportional to the (fluence) x where x = 1.88 ± 0.16 over the range 10−6 - 10−2 nm per pulse for incident pulse fluences 1 – 60 J/cm2. Surface sensitive near edge x-ray fine absorption structure measurements (partial electron yield NEXAFS) reveal that etching does not significantly alter the surface structure from the initial oxygen terminated and graphite-free state. The etching process, which is consistent with a mechanism involving the desorption of carbon species via the decay of 2-photon excited excitons near the surface, appears to have no threshold and is promising for creating a range of high resolution structures.

© 2011 OSA

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(160.4670) Materials : Optical materials
(220.1920) Optical design and fabrication : Diamond machining
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Laser Materials Processing

History
Original Manuscript: June 21, 2011
Revised Manuscript: July 4, 2011
Manuscript Accepted: July 4, 2011
Published: July 12, 2011

Citation
R. P. Mildren, J. E. Downes, J. D. Brown, B. F. Johnston, E. Granados, D. J. Spence, A. Lehmann, L. Weston, and A. Bramble, "Characteristics of 2-photon ultraviolet laser etching of diamond," Opt. Mater. Express 1, 576-585 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006). [CrossRef]
  2. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011). [CrossRef]
  3. L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81(23), 4455–4457 (2002). [CrossRef]
  4. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008). [CrossRef] [PubMed]
  5. M. Karlsson, K. Hjort, and F. Nikolajeff, “Transfer of continuous-relief diffractive structures into diamond by use of inductively coupled plasma dry etching,” Opt. Lett. 26(22), 1752–1754 (2001). [CrossRef] [PubMed]
  6. E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004). [CrossRef]
  7. M. Tarutani, Y. Takai, and R. Shimizu, “Application of the focused-ion-beam technique for preparing the cross-sectional sample of chemical vapor deposition diamond thin film for high-resolution transmission electron microscope observation,” Jpn. J. Appl. Phys. 31(Part 2, No. 9A), L1305–L1308 (1992). [CrossRef]
  8. S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y.-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” N. J. Phys. 13(2), 025020 (2011). [CrossRef]
  9. W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz, and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission,” Appl. Phys. Lett. 83(16), 3365–3367 (2003). [CrossRef]
  10. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2427–2430 (2005). [CrossRef]
  11. M. Rothschild, C. Arnone, and D. J. Ehrlich, “Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection,” J. Vac. Sci. Technol. 4(1), 310–314 (1986). [CrossRef]
  12. A. Piqué and D. B. Chrisey, Direct-Write Technologies for Rapid Prototyping Applications: Sensor, Electronics, and Integrated Power Devices (Academic Press, 2002), p. 440.
  13. D. J. Ehrlich and J. Y. Tsao, “A review of laser–microchemical processing,” J. Vac. Sci. Technol. B 1(4), 969–984 (1983). [CrossRef]
  14. I. P. Sytov, “Estimation of the capabilities of maskless micropatterning by laser-induced chemical etching,” Appl. Phys., A Mater. Sci. Process. 61(1), 75–80 (1995). [CrossRef]
  15. V. V. Kononenko, M. S. Komlenok, S. M. Pimenov, and V. I. Konov, “Photoinduced laser etching of a diamond surface,” Quantum Electron. 37(11), 1043–1046 (2007). [CrossRef]
  16. E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011). [CrossRef] [PubMed]
  17. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995). [CrossRef]
  18. A. Stacey, B. Cowie, J. Orwa, S. Prawer, and A. Hoffman, “Diamond C 1s core-level excitons: surface sensitivity,” Phys. Rev. B 82(12), 125427 (2010). [CrossRef]
  19. V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, V. I. Konov, P. Fischer, V. Romano, H. P. Weber, A. V. Khomich, R. A. Khmelnitskiy, and V. N. Strekalov, “Laser-induced structure transformations of diamonds,” Proc. SPIE 5121, 259–270 (2003). [CrossRef]
  20. A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39(13), 2107–2115 (2000). [CrossRef] [PubMed]
  21. Y. Muramatsu, K. Shimomura, T. Katayama, and E. M. Gullikson, “Total electron yield soft x-ray absorption spectroscopy in the CK region of the mixtures of graphitic carbons and diamond for quantitative analysis of the sp2/sp3-hybridized carbon ratio,” Jpn. J. Appl. Phys. 48(6), 066514 (2009). [CrossRef]
  22. J. C. Zheng, X. N. Xie, A. T. S. Wee, and K. P. Loh, “Oxygen-induced surface state on diamond (100),” Diamond Related Materials 10(3-7), 500–505 (2001). [CrossRef]
  23. H. Jeschke and M. Garcia, “Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration,” Appl. Surf. Sci. 197–198, 107–113 (2002). [CrossRef]
  24. B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005). [CrossRef]
  25. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002). [CrossRef]
  26. J. Smedley, C. Jaye, J. Bohon, T. Rao, and D. A. Fischer, “Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal,” J. Appl. Phys. 105(12), 123108 (2009). [CrossRef]
  27. J. Smedley, J. Bohon, Q. Wu, and T. Rao, “Laser patterning of diamond. Part I. Characterization of surface morphology,” J. Appl. Phys. 105(12), 123107 (2009). [CrossRef]
  28. S. K. Sudheer, V. P. M. Pillai, and V. U. Nayar, “Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations,” J. Raman Spectrosc. 38(4), 427–435 (2007). [CrossRef]
  29. D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of Type IIa single crystal diamond using a Ti:sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002). [CrossRef]
  30. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009). [CrossRef]
  31. C. Bandis and B. B. Pate, “Electron emission due to exciton breakup from negative electron affinity diamond,” Phys. Rev. Lett. 74(5), 777–780 (1995). [CrossRef] [PubMed]
  32. M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder, and R. J. Markunas, “Activation energy and mechanism of CO desorption from (100) diamond surface,” Appl. Phys. Lett. 63(22), 3090–3092 (1993). [CrossRef]
  33. J. Ristein, W. Stein, and L. Ley, “Defect spectroscopy and determination of the electron diffusion length in single crystal diamond by total photoelectron yield spectroscopy,” Phys. Rev. Lett. 78(9), 1803–1806 (1997). [CrossRef]
  34. J. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond,” Phys. Rev. B 60(23), 16135–16142 (1999). [CrossRef]
  35. D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68(18), 2491–2492 (1996). [CrossRef]
  36. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93(24), 241106 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited