OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 605–613

Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited]

Lena Bressel, Dominique de Ligny, Camille Sonneville, Valérie Martinez, Vygantas Mizeikis, Ričardas Buividas, and Saulius Juodkazis  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 605-613 (2011)
http://dx.doi.org/10.1364/OME.1.000605


View Full Text Article

Enhanced HTML    Acrobat PDF (2273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Density changes of GeO2 and SiO2 glasses subjected to irradiation by tightly focused femtosecond pulses are observed by Raman scattering. It is shown that densification caused by the void formation in GeO2 glass is very similar to the changes under hydrostatic pressure. In contrast, the experimental observations in SiO2 glass could be explained by pressure effect or by the fictive temperature anomaly, i. e., a resultant smaller specific volume of the glass (a denser phase) at a high thermal quenching rate. Density changes of GeO2 and SiO2 glasses are opposite upon close-to-equilibrium heating; this gives new insights into the mechanisms of densification under highly non-equilibrium conditions: fs-laser induced micro-explosions, heating and void formation. The pressure and temperature effects of glass modification by ultra-short laser pulses are discussed considering applications in optical memory, waveguiding, and formation of micro-optical elements.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(350.3850) Other areas of optics : Materials processing

ToC Category:
Laser Materials Processing

History
Original Manuscript: May 10, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 6, 2011
Published: August 1, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
Lena Bressel, Dominique de Ligny, Camille Sonneville, Valérie Martinez, Vygantas Mizeikis, Ričardas Buividas, and Saulius Juodkazis, "Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited]," Opt. Mater. Express 1, 605-613 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef] [PubMed]
  2. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett . 27, 1938–1940 (2002). [CrossRef]
  3. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17, 10076–10081 (2009). [CrossRef] [PubMed]
  4. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008). [CrossRef] [PubMed]
  5. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett . 93, 121109 (2008). [CrossRef]
  6. S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett . 94, 241122 (2009). [CrossRef]
  7. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids . 354, 416–424 (2009). [CrossRef]
  8. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  9. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 151–255 (2009). [CrossRef]
  10. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett . 89, 161911 (2006). [CrossRef]
  11. T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys . 43, 145501 (2010). [CrossRef]
  12. G. T. Skublov, Y. B. Marin, V. M. Semikolennykh, S. G. Skublov, and Y. N. Tarasenko, “Volkhovite: A new type of tektite-like glass,” Geol. Ore Deposits 49, 681–696 (2007). [CrossRef]
  13. V. Bouška, Z. Borovec, A. Cimbálníková, I. Kraus, A. Lajcáková, and M. Pacesová, Natural Glasses , Academia, Prague and Ellis Horwood, London, 1993.
  14. A. Koike and M. Tomozawa, “IR investigations of density changes of silica glass and soda-lime silicate glass caused by micro-hardness indentation,” J. Non-Cryst. Solids . 353, 2318–2327 (2007). [CrossRef]
  15. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010). [CrossRef] [PubMed]
  16. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011). [CrossRef] [PubMed]
  17. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys . 109, 023503 (2011). [CrossRef]
  18. C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys . 103, 063516 (2008). [CrossRef]
  19. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010). [CrossRef]
  20. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010). [CrossRef] [PubMed]
  21. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004). [CrossRef]
  22. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett . 82, 2901–2903 (2003). [CrossRef]
  23. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A . 76, 257–260 (2003). [CrossRef]
  24. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A 83, 337–340 (2006). [CrossRef]
  25. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett . 88, 201909 (2006).
  26. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Cryst. Solids . 357, 2637–2640 (2011). [CrossRef]
  27. A. Perriot, Nanoindentation de couches minces déposés sur substrat de verre de silice (English title: Nanoindentation of thin films deposited on vitreous silica) . PhD thesis, Université Paris 6, 21 Dec. 2005. [PubMed]
  28. R. L. Parc, B. Champagnon, P. Guenot, and S. Dubois, “Thermal annealing and density fluctuation in silica glass,” J. Non-Cryst. Solids 293–295, 366–369 (2001). [CrossRef]
  29. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids . 353, 4762–4766 (2007). [CrossRef]
  30. A. Agarwal and M. Tomozawa, “Surface and bulk structural relaxation kinetics of silics glass,” J. Non-Cryst. Solids 209, 264–272 (1997). [CrossRef]
  31. R. Brückner, “Properrties and structure of vitreous silica I,” J. Non-Cryst. Solids . 5, 123–175 (1970). [CrossRef]
  32. J. E. Shelby, “Properties and structure of vitreous silica,” J. Non-Cryst. Solids . 349, 331–336 (2004). [CrossRef]
  33. H. Kakiuchida, N. Shimodaira, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Refractive index and density in F-and Cl-doped silica glasses,” Appl. Phys. Lett. . 86, 161907 (2005). [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics , 7 ed. (Cambridge University Press, 2002).
  35. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009). [CrossRef]
  36. D. Durben and G. Wolf, “Raman spectroscopic study of the pressure-induced coordination change in GeO, glass,” Phys. Rev. B 43, 2355–2363 (1991). [CrossRef]
  37. M. Micoulaut, L. Cormier, and G. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter . 18, R753–R784 (2006). [CrossRef]
  38. C. Martinet, V. Martinez, C. Coussa, B. Champagnon, and M. Tomozawa, “Radial distribution of the fictive temperature in pure silica optical fibers by micro-Raman spectroscopy,” J. Appl. Phys . 103, 083506 (2008). [CrossRef]
  39. B. Champagnon, C. Martinet, C. Coussa, and T. Deschamps, “Polyamorphism: Path to new high density glasses at ambient conditions,” J. Non-Cryst. Solids . 353, 4208–4211 (2007). [CrossRef]
  40. V. Martinez, R. L. Parc, C. Martinet, and B. Champagnon, “Structural studies of germanium doped silica glasses: the role of the fictive temperature,” Opt. Mater . 24, 59–62 (2003). [CrossRef]
  41. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett . 21, 1729–1731 (1996). [CrossRef] [PubMed]
  42. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011). [CrossRef] [PubMed]
  43. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn . 81, 411–448 (2008). [CrossRef]
  44. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19, 6807–6821 (2011). [CrossRef] [PubMed]
  45. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett . 76, 2656–2658 (2000). [CrossRef]
  46. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett . 97, 221102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited