OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 643–651

Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

Haiyan Ou, Yiyu Ou, Chuan Liu, Rolf W. Berg, and Karsten Rottwitt  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 643-651 (2011)
http://dx.doi.org/10.1364/OME.1.000643


View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Germanium nanocrystals are being extensively examined. Their unique optical properties (brought about by the quantum confinement effect) could potentially be applied in wide areas of nonlinear optics, light emission and solid state memory etc. In this paper, Ge nanocrystals embedded in a SiO2 matrix were formed by complementary metal-oxide-semiconductor compatible technology, e.g. plasma enhanced chemical vapour deposition and annealing. Different sizes of the Ge nanocrystals were prepared and analyzed by transmission electron microscopy with respect to their size, distribution and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser power. It was clarified that two strong emission peaks at 3.19 eV and 4.40 eV are from the interface between Ge nanocrystals and SiO2 matrix.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(300.0300) Spectroscopy : Spectroscopy
(160.4236) Materials : Nanomaterials

ToC Category:
Semiconductors

History
Original Manuscript: May 27, 2011
Revised Manuscript: July 11, 2011
Manuscript Accepted: July 11, 2011
Published: July 18, 2011

Citation
Haiyan Ou, Yiyu Ou, Chuan Liu, Rolf W. Berg, and Karsten Rottwitt, "Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence," Opt. Mater. Express 1, 643-651 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rodríguez, M. I. Ortiz, J. Sangrador, T. Rodriguez, M. Avella, A. C. Prieto, A. Torres, J. Jimenez, A. Kling, and C. Ballesteros, “Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films,” Nanotechnology 18(6), 065702 (2007). [CrossRef]
  2. T. V. Torchynska, J. Aguilar-Hernandex, L. Schacht Hernandez, G. Polupan, Y. Goldstein, A. Many, J. Jedrzejewski, and A. Kolobov, “Mechanism of photoluminescence of silicon oxide films enriched by Si and Ge,” Microelectron. Eng. 66(1-4), 83–90 (2003). [CrossRef]
  3. W. K. Choi, Y. W. Ho, S. P. Ng, and V. Ng, “Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films,” J. Appl. Phys. 89(4), 2168–2172 (2001). [CrossRef]
  4. Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B Condens. Matter 51(3), 1658–1670 (1995). [CrossRef] [PubMed]
  5. A. K. Dutta, “Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix fabricated by atmospheric pressure chemical vapor deposition,” Appl. Phys. Lett. 68(9), 1189–1191 (1996). [CrossRef]
  6. H. Yang, X. Yao, S. Xie, X. Wang, S. Liu, Y. Fang, X. Gu, and F. Wang, “Structure and photoluminescence of Ge nanoparticles embedded in SiO2 gel glasses fabricated at different temperatures,” Opt. Mater. 27(4), 725–730 (2005). [CrossRef]
  7. C. L. Heng, Y. J. Liu, A. T. S. Wee, and T. G. Finstad, “The formation of Ge nanocrystals in a metal-insulator-semiconductor structure and its memory effect,” J. Cryst. Growth 262(1-4), 95–104 (2004). [CrossRef]
  8. M. Kanoun, C. Busseret, A. Poncet, A. Souifi, T. Baron, and E. Gautier, “Electronic properties of Ge nanocrystals for non volatile memory applications,” Solid-State Electron. 50(7-8), 1310–1314 (2006). [CrossRef]
  9. H. P. Li, C. H. Kam, Y. L. Lam, Y. X. Jie, W. Ji, A. T. S. Wee, and C. H. A. Huan, “Nonlinear optical response of Ge nanocrystals in silica matrix with excitation of femtosecond pulses,” Appl. Phys. B 72, 611–615 (2001).
  10. Y. X. Jie, Y. N. Xiong, A. T. S. Wee, C. H. A. Huan, and W. Ji, “Dynamics of optical nonlinearity of Ge nanocrystals in a silica matrix,” Appl. Phys. Lett. 77(24), 3926–3928 (2000). [CrossRef]
  11. A. Dowd, R. G. Elliman, M. Samoc, and B. Luther-Davies, “Nonlinear optical response of Ge nanocrystals in a silica matrix,” Appl. Phys. Lett. 74(2), 239–241 (1999). [CrossRef]
  12. L. P. Yue and Y. Z. He, “A study of the nonlinear absorption of Ge nanocrystallites embedded in SiO2 thin films by the z-scan technique,” J. Mater. Sci. Lett. 15(3), 263–265 (1996). [CrossRef]
  13. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Toward a germanium laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010). [CrossRef]
  14. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007). [CrossRef] [PubMed]
  15. Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2189 (1992). [CrossRef]
  16. E. B. Kaganovich, D. V. Korbutyak, Yu. V. Kryuchenko, I. M. Kupchak, E. G. Manoilov, and A. V. Sachenko, “Exciton states and photoluminescence in Ge quantum dots,” Nanotechnology 18(29), 295401 (2007). [CrossRef]
  17. S. Dun, T. Lu, Q. Hu, Y. Hu, C. You, S. Zhang, B. Tang, J. Dai, and N. Huang, “Photoluminescence study of Ge nanocrystals irradiated by reactor neutron flux,” Nucl. Instrum. Methods Phys. Res. B 264(2), 272–276 (2007). [CrossRef]
  18. S. T. Chang and S. H. Liao, “Light emission and photoluminescence from high-k dielectrics containing Ge nanocrystals,” J. Vac. Sci. Technol. B 27(1), 535–537 (2009). [CrossRef]
  19. L. Nataraj, F. Xu, and S. G. Cloutier, “Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals,” Opt. Express 18(7), 7085–7091 (2010). [CrossRef] [PubMed]
  20. Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000). [CrossRef]
  21. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998). [CrossRef]
  22. J. S. Jensen, T. P. L. Pedersen, R. Pereira, J. Chevallier, J. L. Hansen, B. B. Nielsen, and A. N. Larsen, “Ge nanocrystals in magnetron sputtered SiO2,” Appl. Phys., A Mater. Sci. Process. 83(1), 41–48 (2006). [CrossRef]
  23. J. M. J. Lopes, F. C. Zawislak, M. Behar, P. F. P. Fichtner, L. Rebohle, and W. Skorupa, “Cluster coarsening and luminescence emission intensity of Ge nanoclusters in SiO2 layers,” J. Appl. Phys. 94(9), 6059–6064 (2003). [CrossRef]
  24. S. Dun, T. Lu, Q. Hu, Y. Hu, C. You, S. Zhang, B. Tang, J. Dai, and N. Huang, “Photoluminescence study of Ge nanocrystals irradiated by reactor neutron flux,” Nucl. Instrum. Methods Phys. Res. B 264(2), 272–276 (2007). [CrossRef]
  25. A. G. Rolo, A. Chahboun, O. Conde, M. I. Vasilevskiy, and M. J. M. Gomes, “Annealing effect on the photoluminescence of Ge-doped silica films,” Physica E 40(3), 674–679 (2008). [CrossRef]
  26. P. K. Giri, S. Bhattacharyya, K. Das, S. K. Roy, R. Kesavamoorthy, B. K. Panigrahi, and K. G. M. Nair, “A comparative study of the vibrational and luminescence properties of embedded Ge nanocrystals prepared by ion implantation and sputter deposition methods: role of strain and defects,” Semicond. Sci. Technol. 22(12), 1332–1338 (2007). [CrossRef]
  27. Y. Wang, Y. Yang, Y. Guo, J. Yue, and R. Gan, “Raman scattering and room-temperature visible photoluminescence from Ge nanocrystals embedded in SiO2 thin films,” Mater. Lett. 29(1-3), 159–164 (1996). [CrossRef]
  28. H. Ou, T. P. Rørdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. W. Berg, and P. Shi, “Ge nanoclusters in PECVD-deposited glass caused only by heat treatment,” Appl. Phys. B 91(1), 177–181 (2008). [CrossRef]
  29. H. Ou, T. P. Rørdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. W. Berg, “Ge nanoclusters in PECVD-deposited glass after heat treatment and electron-beam irradiation,” Appl. Phys. B 87(2), 327–331 (2007). [CrossRef]
  30. H. Ou, T. P. Rørdam, K. Rottwitt, F. Grumsen, and A. Horsewell, “Ge-nanoclusters embedded in Ge-doped sililca-on-silicon waveguides,” Electron. Lett. 42(9), 532–534 (2006). [CrossRef]
  31. R. W. Berg and T. Nørbygaard, “Wavenumber calibration of CCD detector Raman spectrometers controlled by a sinus arm drive,” Appl. Spectrosc. Rev. 41(2), 165–183 (2006). [CrossRef]
  32. L. Skuja, “Isoelectronic series of twofold corrdinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992). [CrossRef]
  33. P. K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S. K. Ray, B. K. Panigrahi, and K. G. M. Nair, “Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix,” J. Appl. Phys. 103(10), 103534 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited