OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 686–699

Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient

Pi-Cheng Law, Yuh-Shiuan Liu, André Croteau, and Peter D. Dragic  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 686-699 (2011)
http://dx.doi.org/10.1364/OME.1.000686


View Full Text Article

Enhanced HTML    Acrobat PDF (1240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present measurements and modeling of the effect of P2O5 doping on the acoustic damping and temperature sensitivity coefficients of silica fibers. In particular, the Brillouin gain spectrum of a highly P-doped fiber is measured and investigated at different temperatures. It is found that the acoustic damping coefficient (proportional to the Brillouin spectral width) of phosphorus pentoxide (1.41 × 105 m−1 for bulk P2O5 at 11 GHz) is similar to, but larger than, that of germanium dioxide. Additionally, the acoustic velocity (and thereby the Stokes’ shift) is found to be much less dependent on temperature in P2O5 ( + 0.12 m/s/°C) than in SiO2 ( + 0.56 m/s/°C). Using these coefficients (the thermo-acoustic coefficients), the modeled and unique slopes of the Stokes’-shift-versus-temperature curves for the four observed acoustic modes each lie within 3% of the measured values. Finally, utilizing both the thermo-optic and thermo-acoustic coefficients, a design example is presented where a composition is determined for which the dependence of the Brillouin frequency shift on temperature is minimized. In this example, the calculated temperature sensitivity is less than 5 kHz/°C over the temperature range −100 °C < T < 100 °C for the molar composition 0.54P2O5:0.46SiO2.

© 2011 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2300) Fiber optics and optical communications : Fiber measurements
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: June 17, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 16, 2011
Published: July 22, 2011

Citation
Pi-Cheng Law, Yuh-Shiuan Liu, André Croteau, and Peter D. Dragic, "Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient," Opt. Mater. Express 1, 686-699 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO/QELS2005, Vol. 3 of 2005 Conference on Lasers and Electro-Optics, Paper CThZ3.
  2. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  3. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009). [CrossRef]
  4. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993). [CrossRef]
  5. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004). [CrossRef]
  6. P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26(8), 1614–1620 (2009). [CrossRef]
  7. P. D. Dragic, “Simplified model for the effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009). [CrossRef]
  8. P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett. 22(22), 1698–1700 (2010). [CrossRef]
  9. C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970). [CrossRef]
  10. A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969). [CrossRef]
  11. R. E. Youngman, J. Kieffer, J. D. Bass, and L. Duffrène, “Extended structural integrity in network glasses and liquids,” J. Non-Cryst. Solids 222, 190–198 (1997). [CrossRef]
  12. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010). [CrossRef]
  13. M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, and E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers,” Proc. SPIE 4083, 12–22 (2000). [CrossRef]
  14. D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113(1), 58–64 (1989). [CrossRef]
  15. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990). [CrossRef] [PubMed]
  16. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997). [CrossRef]
  17. P.-C. Law and P. D. Dragic, “Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers,” Opt. Express 18(18), 18852–18865 (2010). [CrossRef] [PubMed]
  18. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellimeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994). [CrossRef]
  19. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009). [CrossRef]
  20. E. T. Y. Lee and E. R. M. Taylor, “Thermo-optic coefficients of potassium alumino-metaphosphate glasses,” J. Phys. Chem. Solids 65(6), 1187–1192 (2004). [CrossRef]
  21. A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 176–183 (2006).
  22. R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter 18(32), 7507–7527 (2006). [CrossRef] [PubMed]
  23. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited