OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 711–723

Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 711-723 (2011)
http://dx.doi.org/10.1364/OME.1.000711


View Full Text Article

Enhanced HTML    Acrobat PDF (2832 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The refractive index changes in doped silica are investigated. We observed that the permanent isotropic index change threshold (T1) is not significantly dependent on the doping. We show that strong birefringence (permanent linear birefringence) exists in doped silica but its threshold (T2) exhibits significant dependence on the used dopants. In our conditions, comparing with silica (0.31 μJ/pulse here), for 1.5 at% Ge-doped silica the T2 threshold is smaller (0.14 ± 0.05 μJ/pulse). For a silica doped with 0.3 at% of fluorine, T2 is close to 1.20 ± 0.05 μJ/pulse. An interpretation is given not only about threshold variation but also about RIC for energies beyond. It is based on the overcoming of relaxation time in the volume interaction.

© 2011 OSA

OCIS Codes
(160.6030) Materials : Silica
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:
Laser Materials Processing

History
Original Manuscript: April 7, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: July 1, 2011
Published: July 27, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, "Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses," Opt. Mater. Express 1, 711-723 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-711


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999). [CrossRef]
  2. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008). [CrossRef] [PubMed]
  3. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003). [CrossRef] [PubMed]
  4. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007). [CrossRef]
  5. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008). [CrossRef]
  6. M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–1-55752–896–4.
  7. M. Kaempfe, G. Seifert, K. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001). [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  9. M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008). [CrossRef]
  10. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006). [CrossRef]
  11. B. Poumellec and M. Lancry, “Damage thresholds in femtosecond laser processing of silica: a review,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–1-55752–896–4.
  12. L. Sudrie, “Propagation non-linéaire des impulsions laser femtosecondes dans la silice,” (Université de Paris Sud XI Orsay, 2002).
  13. C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001). [CrossRef]
  14. M. Lancry, P. Niay, and M. Douay, “Comparing the properties of various sensitization methods in H2-loaded, UV hypersensitized or OH-flooded standard germanosilicate fibers,” Opt. Express 13(11), 4037–4043 (2005). [CrossRef] [PubMed]
  15. M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fibers materials,” Phys. Rep. (in press).
  16. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004). [CrossRef] [PubMed]
  17. E. Bricchi and P. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006). [CrossRef]
  18. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  19. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998). [CrossRef]
  20. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003). [CrossRef]
  21. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006). [CrossRef]
  22. A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. Kazansky, “SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006). [CrossRef]
  23. P. K. Bachmann, W. G. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 1: Preforms,” Appl. Opt. 25(7), 1093–1098 (1986). [CrossRef] [PubMed]
  24. G. Scherer, “Stress-optical effects in optical waveguides,” J. Non-Cryst. Solids 38-39, 201–204 (1980). [CrossRef]
  25. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20(22), 2279–2281 (1995). [CrossRef] [PubMed]
  26. M. Lancry, B. Poumellec, and M. Douay, “Anisotropic luminescence photo-excitation in H2-loaded Ge-doped silica exposed to polarized 193 nm laser light,” J. Non-Cryst. Solids 355(18-21), 1062–1065 (2009). [CrossRef]
  27. J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003). [CrossRef]
  28. H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. B 191(1-4), 89–97 (2002). [CrossRef]
  29. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001). [CrossRef] [PubMed]
  30. H. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000). [CrossRef]
  31. M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009). [CrossRef]
  32. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004). [CrossRef]
  33. S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996). [CrossRef]
  34. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Status Solidi C 2(1), 15–24 (2005). [CrossRef]
  35. M. Lancry, E. Régnier, and B. Poumellec, “Fictive temperature in silica-based glasses and its application to optical fiber manufacturing,” Prog. Mater. Sci. 57(1), 63–94 (2012). [CrossRef]
  36. A. Tool, “Relation between inelastic deformability and theram expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946). [CrossRef]
  37. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  38. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B (in press).
  39. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001). [CrossRef]
  40. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005). [CrossRef]
  41. M. Yamane and J. Mackenzie, “Vicker's hardness of glass,” J. Non-Cryst. Solids 15(2), 153–164 (1974). [CrossRef]
  42. P. Richet, D. de Ligny, and E. Westrum, “Low-temperature heat capacity of GeO2 and B2O3 glasses: thermophysical and structural implications,” J. Non-Cryst. Solids 315(1-2), 20–30 (2003). [CrossRef]
  43. K. Tajima, M. Tateda, and M. Ohashi, “Viscosity of GeO2-doped silica glasses,” J. Lightwave Technol. 12(3), 411–414 (1994). [CrossRef]
  44. M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993). [CrossRef]
  45. M. Lancry and B. Poumellec, “Femtosecond laser direct writing in P, Ge doped silica glasses: time resolved plasma measurements,” in Femtosecond Laser Microfabrication, OSA Technical Digest (CD) (Optical Society of America, 2009), ISBN 978–1–55752–879–7, paper LMTuA5 (2009).
  46. M. Lancry, K. Cook, J. Canning, and B. Poumellec, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica,” in The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim (2011).
  47. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007). [CrossRef]
  48. P. Kazansky, E. Bricchi, Y. Shimotsuma, and K. Hirao, “Self-assembled nanostructures and two-plasmon decay in femtosecond processing of transparent materials,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThJ3.
  49. M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express (in press).
  50. R. Araujo, “Oxygen vacancies in silica and germania glasses,” J. Non-Cryst. Solids 197(2-3), 164–169 (1996). [CrossRef]
  51. M. Schurman and M. Tomozawa, “Equilibrium oxygen vacancy concentrations and oxidant diffusion in germania, silica, and germania-silica glasses,” J. Non-Cryst. Solids 202(1-2), 93–106 (1996). [CrossRef]
  52. T. E. Tsai, E. J. Friebele, and D. L. Griscom, “Thermal stability of photoinduced gratings and paramagnetic centers in Ge- and Ge/P-doped silica optical fibers,” Opt. Lett. 18(12), 935–937 (1993). [CrossRef] [PubMed]
  53. K. Sanada, N. Shamoto, and K. Inada, “Radiation resistance of fluorine-doped silica-core fibers,” J. Non-Cryst. Solids 179, 339–344 (1994). [CrossRef]
  54. K. Saito and A. Ikushima, “Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass,” J. Appl. Phys. 91(8), 4886–4890 (2002). [CrossRef]
  55. L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono, “Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping,” J. Non-Cryst. Solids 345-346, 328–331 (2004). [CrossRef]
  56. B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6(12), 1595–1624 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited