OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 766–782

Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 766-782 (2011)
http://dx.doi.org/10.1364/OME.1.000766


View Full Text Article

Enhanced HTML    Acrobat PDF (2298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This review allows better defining the domains of macroscopic effects produced by the femtosecond laser irradiation in pure silica according to the laser parameters.

© 2011 OSA

OCIS Codes
(160.6030) Materials : Silica
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:
Laser Materials Processing

History
Original Manuscript: June 29, 2011
Revised Manuscript: July 26, 2011
Manuscript Accepted: July 27, 2011
Published: July 29, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Citation
B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, "Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited]," Opt. Mater. Express 1, 766-782 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008). [CrossRef] [PubMed]
  2. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003). [CrossRef] [PubMed]
  3. R. S. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett. 33(12), 1312–1314 (2008). [CrossRef] [PubMed]
  4. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011). [CrossRef] [PubMed]
  5. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007). [CrossRef]
  6. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010). [CrossRef] [PubMed]
  7. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  8. M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–971–55752–55896–55754.
  9. M. Ams, G. Marshall, P. Dekker, M. Dubov, V. Mezentsev, I. Bennion, and M. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008). [CrossRef]
  10. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006). [CrossRef]
  11. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008). [CrossRef]
  12. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurements in Ge-doped silica exposed to IR femtosecond laser,” Phys. Rev. B . In Press.
  13. F. Quéré, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56(1), 138–144 (2001). [CrossRef]
  14. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tighly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001). [CrossRef]
  15. F. Quéré, S. Guizard, P. Martin, G. Petite, H. Merdji, B. Carré, J. Hergott, and L. Le Déroff, “Hot-electron relaxation in quartz using high-order harmonics,” Phys. Rev. B 61(15), 9883–9886 (2000). [CrossRef]
  16. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101–035106 (2006). [CrossRef]
  17. S. Skupin and L. Bergé, “Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion,” Physica D 220(1), 14–30 (2006). [CrossRef]
  18. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refarctive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241(4-6), 529–538 (2004). [CrossRef]
  19. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005). [CrossRef]
  20. L. Sudrie, “Propagation non-linéaire des impulsions laser femtosecondes dans la silice,” Université de Paris Sud XI Orsay http://wwwy.ensta.fr/ilm/Archives/Theses_pdf/L_Sudrie (2002).
  21. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20(22), 2279–2281 (1995). [CrossRef] [PubMed]
  22. S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997). [CrossRef]
  23. M. Lancry, N. Groothoff, S. Guizard, W. Yang, B. Poumellec, P. Kazansky, and J. Canning, “Femtosecond laser direct processing in wet and dry silica glass,” J. Non-Cryst. Solids 355(18-21), 1057–1061 (2009). [CrossRef]
  24. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004). [CrossRef]
  25. S. Guizard, P. Martin, G. Petite, P. D'Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996). [CrossRef]
  26. P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner, “Field dependent avalanche ionization rates in dielectrics,” Phys. Rev. Lett. 102(8), 083001 (2009). [CrossRef] [PubMed]
  27. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008). [CrossRef]
  28. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express . In Press.
  29. M. Lancry, B. Poumellec, and F. Brisset, “Ultrafast silica glass decomposition induced by femtosecond laser irradiation,” in 12th International Symposium on Laser Precision Microfabrication, 2011), http://www.jlps.gr.jp/lpm/lpm2011/ .
  30. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, and V. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007). [CrossRef]
  31. P. G. Kazansky, E. Bricchi, Y. Shimotsuma, and K. Hirao, “Self-Assembled Nanostructures and Two-Plasmon Decay in Femtosecond Processing of Transparent Materials,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ3.
  32. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252(24), 8576–8579 (2006). [CrossRef]
  33. M. Lancry, B. Poumellec, W. Yang, and B. Bourguignon, “Oriented creation of anisotropic defects by IR femtosecond laser scanning in silica,” Opt. Express , to be re-submitted.
  34. R. Fleischer, P. Price, and R. Walker, “Solid-state track detectors: applications to nuclear science and geophysics,” Annu. Rev. Nucl. Sci. 15(1), 1–28 (1965). [CrossRef]
  35. C. Schaffer, A. Brodeur, N. Nishimura, and E. Mazur, “Laser-induced microexplosions in transparent materials: microstructuring with nanojoules,” in Proceedings of SPIE, 143–147 (1999).
  36. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolaï, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006). [CrossRef] [PubMed]
  37. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999). [CrossRef]
  38. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004). [CrossRef] [PubMed]
  39. A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88(13), 131912 (2006). [CrossRef]
  40. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef] [PubMed]
  41. C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005). [CrossRef]
  42. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005). [CrossRef] [PubMed]
  43. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006). [CrossRef]
  44. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express 14(21), 10117–10124 (2006). [CrossRef] [PubMed]
  45. P. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999). [CrossRef]
  46. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002). [CrossRef] [PubMed]
  47. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000). [CrossRef] [PubMed]
  48. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008). [CrossRef]
  49. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006). [CrossRef] [PubMed]
  50. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008). [CrossRef] [PubMed]
  51. H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett. 29(17), 1129–1131 (1972). [CrossRef]
  52. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006). [CrossRef] [PubMed]
  53. D. Liu, Y. Li, M. Liu, H. Yang, and Q. Gong, “The polarization-dependence of femtosecond laser damage threshold inside fused silica,” Appl. Phys. B 91(3-4), 597–599 (2008). [CrossRef]
  54. B. Poumellec and M. Lancry, “Damage thresholds in femtosecond laser processing of silica: a review,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD), (Optical Society of America, 2010), ISBN 978–971–55752–55896–55754.
  55. C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001). [CrossRef]
  56. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005). [CrossRef] [PubMed]
  57. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17(12), 9515–9525 (2009). [CrossRef] [PubMed]
  58. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001). [CrossRef]
  59. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001). [CrossRef] [PubMed]
  60. J. Chan, T. Huser, S. Risbud, and D. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003). [CrossRef]
  61. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24(7), 1627–1632 (2007). [CrossRef]
  62. N. Nguyen, A. Saliminia, S. Chin, and R. Vallée, “Control of femtosecond laser written waveguides in silica glass,” Appl. Phys. B 85(1), 145–148 (2006). [CrossRef]
  63. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004). [CrossRef] [PubMed]
  64. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express 14(15), 6971–6980 (2006). [CrossRef] [PubMed]
  65. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24(18), 1311–1313 (1999). [CrossRef] [PubMed]
  66. S. Onda, W. Watanabe, K. Yamada, K. Itoh, and J. Nishii, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22(11), 2437–2443 (2005). [CrossRef]
  67. I. Burakov, N. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007). [CrossRef]
  68. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23(11), 2317–2322 (2006). [CrossRef]
  69. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28(17), 1591–1593 (2003). [CrossRef] [PubMed]
  70. S. Lee and S. Nikumb, “Characteristics of filament induced Dammann gratings fabricated using femtosecond laser,” Opt. Laser Technol. 39(7), 1328–1333 (2007). [CrossRef]
  71. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001). [CrossRef] [PubMed]
  72. E. Bricchi, “Femtosecond laser micro-machining and consequent self-assembled nano-structures in transparent materials,” PhD thesis 30234 (2005).
  73. K. Itoh and W. Watanabe, “Toward nano-and microprocessing in glass with femtosecond laser pulses,” RIKEN Rev. 90–94 (2003).
  74. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23(11), 2317–2322 (2006). [CrossRef]
  75. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006). [CrossRef]
  76. P. Kazansky, “Recent advances in modification ofoptical materials by strong fields: from poling to femtosecond laserwriting,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2009), paper ThA4_1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: PDF (383 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited