OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 866–882

Femtosecond laser induced photochemistry in materials tailored with photosensitive agents [Invited]

Arnaud Royon, Yannick Petit, Gautier Papon, Martin Richardson, and Lionel Canioni  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 866-882 (2011)
http://dx.doi.org/10.1364/OME.1.000866


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This article deals with the recent advances in photochemistry in optical materials induced by femtosecond laser pulses. The field of investigation of this paper is limited to bulk solid isotropic transparent materials (glasses and polymers), specifically tailored with photoactive agents. The formation mechanisms of laser-induced color centers, nanoclusters, nanoparticles and nanocrystallites are reviewed and argued, in particular the influence of the temperature during or after the laser irradiation. The relation between the photo-induced structures and the optical property modifications are discussed, as well as some applications.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3450) Lasers and laser optics : Laser-induced chemistry
(160.4670) Materials : Optical materials
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Materials Processing

History
Original Manuscript: July 13, 2011
Revised Manuscript: July 28, 2011
Manuscript Accepted: July 28, 2011
Published: August 8, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Citation
Arnaud Royon, Yannick Petit, Gautier Papon, Martin Richardson, and Lionel Canioni, "Femtosecond laser induced photochemistry in materials tailored with photosensitive agents [Invited]," Opt. Mater. Express 1, 866-882 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  2. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009). [CrossRef]
  3. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010). [CrossRef]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  5. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008). [CrossRef]
  6. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001). [CrossRef]
  7. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Sol. 239, 91–95 (1998).
  8. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24(18), 1311–1313 (1999). [CrossRef] [PubMed]
  9. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  10. L. A. Fernandes, J. R. Grenier, J. H. Kim, P. R. Herman, J. S. Aitchison, and P. V. Marques, “Femtosecond laser direct fabrication of integrated optical wave plates in fused silica,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWO6.
  11. J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett. 81(2), 196–198 (2002). [CrossRef]
  12. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  13. H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6(5), 396–398 (1999). [CrossRef]
  14. L. Siiman, J. Lumeau, and L. B. Glebov, “Nonlinear photosensitivity of photo-thermo-refractive glass by high intensity laser irradiation,” J. Non-Cryst. Sol. 354, 4070–4074 (2008).
  15. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005). [CrossRef]
  16. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  17. M. Bellec, A. Royon, B. Bousquet, K. Bourhis, M. Treguer, T. Cardinal, M. Richardson, and L. Canioni, “Beat the diffraction limit in 3D direct laser writing in photosensitive glass,” Opt. Express 17(12), 10304–10318 (2009). [CrossRef] [PubMed]
  18. G. De Cremer, B. F. Sels, J.-I. Hotta, M. B. J. Roeffaers, E. Bartholomeeusen, E. Coutino-Gonzales, V. Valtchev, D. E. De Vos, T. Vosch, and J. Hofkens, “Optical encoding of silver zeolite microcarriers,” Adv. Mater. (Deerfield Beach Fla.) 22, 957–960 (2010).
  19. A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.) 22(46), 5282–5286 (2010). [CrossRef] [PubMed]
  20. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000). [CrossRef] [PubMed]
  21. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28(9), 716–718 (2003). [CrossRef] [PubMed]
  22. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443(4-6), 253–257 (2007). [CrossRef]
  23. L. Canioni, M. Bellec, A. Royon, B. Bousquet, and T. Cardinal, “Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass,” Opt. Lett. 33(4), 360–362 (2008). [CrossRef] [PubMed]
  24. J. Choi, M. Bellec, K. Bourhis, A. Royon, L. Canioni, T. Cardinal, E. Fargin, V. Rodriguez, M. Dussauze, A. Delestre, and M. Richardson, “Femtosecond laser induced micro-structured silver containing glass as an engineered nonlinear optical material,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), paper AWB3.
  25. A. Royon, M. Bellec, J. Y. Choi, K. Bourhis, T. Cardinal, M. Richardson, and L. Canioni, “Second-harmonic generation by direct-laser-induced-poling in a femto-photo-luminescent glass,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BThD2.
  26. S. D. Stookey, “Photosensitive glass,” Ind. Eng. Chem. 41(4), 856–861 (1949). [CrossRef]
  27. Y. Kondo, K. Miura, T. Suzuki, H. Inouye, T. Mitsuyu, and K. Hirao, “Three-dimensional arrays of crystallites within glass by using non-resonant femtosecond pulses,” J. Non-Cryst. Sol. 253, 143–156 (1999).
  28. A. V. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135–142 (2004).
  29. B. Hua, Y. Shimotsuma, M. Nishi, K. Miura, and K. Hirao, “Micro-modification of metal-doped glasses by a femtosecond laser,” J. Laser Micro/Nanoengineering 2, 36–39 (2007).
  30. J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett. 29(4), 370–372 (2004). [CrossRef] [PubMed]
  31. Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, and K. Midorikawa, “Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser,” Opt. Express 11(15), 1809–1816 (2003). [CrossRef] [PubMed]
  32. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003). [CrossRef]
  33. Y. Shimotsuma, M. Sakakura, K. Miura, J. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol. 7(1), 94–104 (2007). [PubMed]
  34. J. Qiu, P. G. Kazanski, J. Si, K. Miura, T. Mitsuyu, K. Hirao, and A. L. Gaeta, “Memorized polarization-dependent light scattering in rare-earth-ion-doped glass,” Appl. Phys. Lett. 77(13), 1940–1942 (2000). [CrossRef]
  35. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Sol. 354, 1100–1111 (2008).
  36. Y. Watanabe, G. Namikawa, T. Onuki, K. Nishio, and T. Tsuchiya, “Photosensitivity in phosphate glass doped with Ag+ upon exposure to near-ultraviolet femtosecond laser pulses,” Appl. Phys. Lett. 78(15), 2125–2127 (2001). [CrossRef]
  37. T. Kurobori, W. Zheng, and C. Zhao, “Silver-activated radiophotoluminescent glass: band assignments and a novel readout system using a modulated UV laser diode,” 11th Europhysical Conference on Defects in Insulating Materials (2010).
  38. Y. Miyamoto, T. Yamamoto, K. Kinoshita, S. Koyama, Y. Takei, H. Nanto, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Emission mechanism of radiophotoluminescence in Ag-doped phosphate glass,” Radiat. Meas. 45(3-6), 546–549 (2010). [CrossRef]
  39. Y. Miyamoto, K. Kinoshita, S. Koyama, Y. Takei, H. Nanto, T. Yamamoto, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Emission and excitation mechanism of radiophotoluminescence in Ag+-activated phosphate glass,” Nucl. Instrum. Methods Phys. Res. A 619(1-3), 71–74 (2010). [CrossRef]
  40. W. Zheng and T. Kurobori, “Assignments and optical properties of X-ray-induced colour centres in blue and orange radiophotoluminescent silver-activated glasses,” J. Lumin. 131(1), 36–40 (2011). [CrossRef]
  41. W. Zheng, T. Kurobori, Y. Miyamoto, H. Nanto, and T. Yamamoto, “Formation and assignment of silver defect centres in phosphate glass induced by femtosecond laser pulses,” Radiat. Meas. 1–4, (2011), doi:. [CrossRef]
  42. C. Maurel, T. Cardinal, M. Bellec, L. Canioni, B. Bousquet, M. Treguer, J.-J. Videau, J. Choi, and M. Richardson, “Luminescence properties of silver zinc phosphate glasses following different irradiations,” J. Lumin. 129(12), 1514–1518 (2009). [CrossRef]
  43. K. Bourhis, A. Royon, M. Bellec, J. Choi, A. Fargues, M. Treguer, J.-J. Videau, D. Talaga, M. Richardson, T. Cardinal, and L. Canioni, “Femtosecond laser structuring and optical properties of a silver-containing glass,” J. Non-Cryst. Solids 356, 2658–2665 (2010).
  44. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D patterning at the nanoscale of fluorescent emitters in glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010). [CrossRef]
  45. T. Gleitsmann, B. Stegemann, and T. M. Bernhardt, “Femtosecond-laser-activated fluorescence from silver oxide nanoparticles,” Appl. Phys. Lett. 84(20), 4050–4052 (2004). [CrossRef]
  46. T. Gleitsmann, T. M. Bernhardt, and L. Wöste, “Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix,” Appl. Phys., A Mater. Sci. Process. 82(1), 125–130 (2006). [CrossRef]
  47. G. De Cremer, Y. Antoku, M. B. J. Roeffaers, M. Sliwa, J. Van Noyen, S. Smout, J. Hofkens, D. E. De Vos, B. F. Sels, and T. Vosch, “Photoactivation of silver-exchanged zeolite A,” Angew. Chem. Int. Ed. Engl. 47(15), 2813–2816 (2008). [CrossRef] [PubMed]
  48. G. De Cremer, E. Coutiño-Gonzalez, M. B. J. Roeffaers, B. Moens, J. Ollevier, M. Van der Auweraer, R. Schoonheydt, P. A. Jacobs, F. C. De Schryver, J. Hofkens, D. E. De Vos, B. F. Sels, and T. Vosch, “Characterization of fluorescence in heat-treated silver-exchanged zeolites,” J. Am. Chem. Soc. 131(8), 3049–3056 (2009). [CrossRef] [PubMed]
  49. G. De Cremer, E. Coutiño-Gonzalez, M. B. J. Roeffaers, D. E. De Vos, J. Hofkens, T. Vosch, and B. F. Sels, “In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment,” ChemPhysChem 11(8), 1627–1631 (2010). [PubMed]
  50. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28(13), 1144–1146 (2003). [CrossRef] [PubMed]
  51. J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999). [CrossRef]
  52. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009). [CrossRef] [PubMed]
  53. A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79(11), 115411 (2009). [CrossRef]
  54. A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Time-resolved investigation of laser-induced shape transformation of silver nanoparticles,” Phys. Rev. B 80(11), 115415 (2009). [CrossRef]
  55. G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B 71, 795–800 (2000).
  56. A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94(3), 459–465 (2009). [CrossRef]
  57. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001). [CrossRef]
  58. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  59. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79, 1695–1709 (2004). [CrossRef]
  60. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997). [CrossRef]
  61. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006). [CrossRef] [PubMed]
  62. P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett. 97(25), 253001 (2006). [CrossRef] [PubMed]
  63. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008). [CrossRef]
  64. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  65. L. N. Gaier, M. Lein, M. I. Stockman, G. L. Yudin, P. B. Corkum, M. Y. Ivanov, and P. L. Knight, “Hole-assisted energy deposition in dielectrics and clusters in the multiphoton regime,” J. Mod. Opt. 52(7), 1019–1030 (2005). [CrossRef]
  66. L. N. Gaier, M. Lein, M. I. Stockman, P. L. Knight, P. B. Corkum, M. Y. Ivanov, and G. L. Yudin, “Ultrafast multiphoton forest fires and fractals in clusters and dielectrics,” J. Phys. At. Mol. Opt. Phys. 37(3), L57–L67 (2004). [CrossRef]
  67. D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13(9), 3208–3217 (2005). [CrossRef] [PubMed]
  68. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003). [CrossRef]
  69. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  70. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006). [CrossRef] [PubMed]
  71. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15(25), 16800–16807 (2007). [CrossRef] [PubMed]
  72. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008). [CrossRef]
  73. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010). [CrossRef]
  74. M. Martin, J. J. Videau, L. Canioni, F. Adamietz, L. Sarger, and G. Le Flem, “Planar waveguides formed by Ag+-Na+ ion exchange in nonlinear optical glasses: diffusion and optical properties,” Appl. Opt. 39(3), 435–440 (2000). [CrossRef] [PubMed]
  75. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008). [CrossRef]
  76. Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103(3), 663–667 (2011). [CrossRef]
  77. J. E. Shelby, Introduction to Glass Science, 2nd ed., (Royal Society of Chemistry, 2005).
  78. S. Coffa, J. M. Poate, D. C. Jacobson, W. Frank, and W. Gustin, “Determination of diffusion mechanisms in amorphous silicon,” Phys. Rev. B Condens. Matter 45(15), 8355–8358 (1992). [CrossRef] [PubMed]
  79. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006). [CrossRef] [PubMed]
  80. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006). [CrossRef] [PubMed]
  81. A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27(8), 1688–1692 (2010). [CrossRef]
  82. A. Stalmashonak, H. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94(19), 193111 (2009). [CrossRef]
  83. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef] [PubMed]
  84. J. Squier and J. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optical imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001). [CrossRef]
  85. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23(11), 2317–2322 (2006). [CrossRef]
  86. J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001). [CrossRef]
  87. I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale 3(5), 1963–1970 (2011). [CrossRef] [PubMed]
  88. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16(1), 237–240 (2001). [CrossRef]
  89. Y. Dai, X. Hu, C. Wang, D. Chen, X. Jiang, C. Zhu, B. Yu, and J. Qiu, “Fluorescent Ag nanoclusters in glass induced by an infrared femtosecond laser,” Chem. Phys. Lett. 439(1-3), 81–84 (2007). [CrossRef]
  90. S. Lee, K.-S. Jang, J.-H. Shin, M.-T. Trinh, K.-S. Lim, I.-B. Sohn, Y.-C. Noh, J. Lee, and E. Kim, “Spectral change in silver-doped sodium-borate glass by using femtosecond laser irradiation,” J. Korean Phys. Soc. 52(5), 1665–1668 (2008). [CrossRef]
  91. Q.-Z. Zhao, J.-R. Qiu, X.-W. Jiang, C.-J. Zhao, and C.-S. Zhu, “Controllable precipitation and dissolution of silver nanoparticles in ultrafast laser pulses irradiated Ag+-doped phosphate glass,” Opt. Express 12(17), 4035–4040 (2004). [CrossRef] [PubMed]
  92. Y. Dai, J. Qiu, X. Hu, L. Yang, X. Jiang, C. Zhu, and B. Yu, “Effect of cerium oxide on the precipitation of silver nanoparticles in femtosecond laser irradiated silicate glass,” Appl. Phys. B 84(3), 501–505 (2006). [CrossRef]
  93. J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002). [CrossRef]
  94. S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticles precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84(12), 2046–2048 (2004). [CrossRef]
  95. J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004). [CrossRef] [PubMed]
  96. X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138(1), 43–46 (2006). [CrossRef]
  97. H. Zeng, J. Qiu, X. Jiang, C. Zhu, and F. Gan, “Effect of Al2O3 on the precipitation of Ag nanoparticles in silicate glasses,” J. Cryst. Growth 262(1-4), 255–258 (2004). [CrossRef]
  98. A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32(21), 3215 (2007). [CrossRef] [PubMed]
  99. A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009). [CrossRef]
  100. G. Seifert, A. Stalmashonak, H. Hofmeister, J. Haug, and M. Dubiel, “Laser-induced, polarization dependent shape transformation of Au/Ag nanoparticles in glass,” Nanoscale Res. Lett. 4(11), 1380–1383 (2009). [CrossRef] [PubMed]
  101. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Towards the production of micro-polarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F43 (2009). [CrossRef]
  102. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200–1202 (1999). [CrossRef]
  103. M. Kaempfe, H. Hofmeister, S. Hopfe, G. Seifert, and H. Graener, “Morphological changes of silver nanoparticle distributions in glass induced by ultrashort laser pulses,” J. Phys. Chem. B 104(50), 11847–11852 (2000). [CrossRef]
  104. G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of dichroitic diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73(4), 355–359 (2001). [CrossRef]
  105. A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C 113(28), 12028–12032 (2009). [CrossRef]
  106. B. Fisette, F. Busque, J.-Y. Degorce, and M. Meunier, “Three-dimensional crystallization inside photosensitive glasses by focused femtosecond laser,” Appl. Phys. Lett. 88(9), 091104 (2006). [CrossRef]
  107. Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett. 34(21), 3433–3435 (2009). [CrossRef] [PubMed]
  108. L. Siiman, J. Lumeau, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96(1), 127–134 (2009). [CrossRef]
  109. Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Sol. 351, 885–892 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited