OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 898–910

Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 898-910 (2011)
http://dx.doi.org/10.1364/OME.1.000898


View Full Text Article

Enhanced HTML    Acrobat PDF (1526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent progress in fabrication and mid-IR lasing of transition metal doped II-VI single crystal and thermo-diffusion doped polycrystalline and hot-pressed ceramic gain media as well as nano and micro-crystalline laser active powders, powders in the liquid suspension, polymer-film, thin film waveguides and chalcogenides glass composites is reported.

© 2011 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.6990) Materials : Transition-metal-doped materials
(230.7390) Optical devices : Waveguides, planar
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Laser Materials

History
Original Manuscript: May 23, 2011
Revised Manuscript: July 19, 2011
Manuscript Accepted: July 30, 2011
Published: August 11, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Citation
S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, "Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited]," Opt. Mater. Express 1, 898-910 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.E. Webb and J.D.C. Jones, eds., Handbook of Laser Technology and Applications, Vol II (IOP Publishing, 2004).
  2. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986). [CrossRef]
  3. http://nobelprize.org/nobel_prizes/chemistry/laureates/1999/ .
  4. http://nobelprize.org/nobel_prizes/physics/laureates/2005/ .
  5. W. Low and M. Weger, “Paramagnetic resonance and optical spectra of divalent iron in cubic fields. II. Experimental results,” Phys. Rev. 118(5), 1130–1136 (1960). [CrossRef]
  6. R. Pappalardo and R. E. Dietz, “Absorption spectra of transition ions in CdS crystals,” Phys. Rev. 123(4), 1188–1203 (1961). [CrossRef]
  7. J. M. Baranowski, J. W. Allen, and G. L. Pearson, “Crystal-field spectra of 3dn impurities in II-VI and III-V compound semiconductors,” Phys. Rev. 160(3), 627–632 (1967). [CrossRef]
  8. G. Grebe and H. J. Schulz, “Luminescence of Cr2+ centres and related optical interactions involving crystal field levels of chromium ions in zinc sulfide,” Z. Naturforsch. C 29A, 1803–1819 (1974).
  9. A. Fazzio, M. J. Caldas, and A. Zunger, “Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors,” Phys. Rev. B 30(6), 3430–3455 (1984). [CrossRef]
  10. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996). [CrossRef]
  11. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. V. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010). [CrossRef]
  12. I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004). [CrossRef]
  13. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II-VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007). [CrossRef]
  14. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006). [CrossRef]
  15. http://www.ipgphotonics.com/midir
  16. S. O. Kasap and P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, NY, 2006).
  17. C. H. Su, S. Feth, M. P. Volz, R. Matyi, M. A. George, K. Chattopadhyay, A. Burger, and S. L. Lehoczky, “Vapor growth and characterization of Cr-doped ZnSe crystals,” J. Cryst. Growth 207(1-2), 35–42 (1999). [CrossRef]
  18. B. K. Rai, R. S. Katiyar, K.-T. Chen, and A. Burger, “Raman and photoluminescence studies on intrinsic and Cr-doped single crystals,” J. Appl. Phys. 83(11), 6011–6018 (1998). [CrossRef]
  19. Yu. V. Korostelin and V. I. Kozlovsky, “Vapour growth of II–VI solid solution single crystals by contact-free technique,” J. Alloy. Comp. 371, 25–30 (2004). [CrossRef]
  20. V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Y. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247, 1553–1556 (2010). [CrossRef]
  21. V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38(3), 205–208 (2008). [CrossRef]
  22. V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49—4.65 μm,” Quantum Electron. 41(1), 1–3 (2011). [CrossRef]
  23. M. Doroshenko, P. Koranda, H. Jelínková, J. Šulc, M. Němec, T. Basiev, V. Komar, A. Gerasimenko, and V. Puzikov, “Cr:ZnSe prism for broadly tunable mid-infrared laser radiation generation,” Laser Phys. Lett. 4(7), 503–506 (2007). [CrossRef]
  24. M. E. Doroshenko, H. Jelínková, P. Koranda, J. Šulc , T. T. Basiev, V. V. Osiko, V. K. Komar, A. S. Gerasimenko, V. M. Puzikov, V. V. Badikov, and D. V. Badikov, “Tunable mid-infrared laser properties of Cr2+:ZnMgSe and Fe2+:ZnSe crystals,” Laser Phys. Lett. 7, 38–45 (2010). [CrossRef]
  25. J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24(22), 1575–1577 (1999). [CrossRef] [PubMed]
  26. A. G. Bluiett, U. Hömmerich, R. T. Shah, S. B. Trivedi, S. W. Kutcher, and C. C. Wang, “Observation of lasing from Cr2+:CdTe and compositional effects in Cr2+ doped II-VI semiconductors,” J. Electron. Mater. 31(7), 806–810 (2002). [CrossRef]
  27. S. B. Trivedi, C. C. Wang, S. Kutcher, U. Hommerich, and W. Palosz, “Crystal growth technology of binary and ternary II VI semiconductors for photonic applications,” J. Cryst. Growth 310(6), 1099–1106 (2008). [CrossRef]
  28. U. Hömmerich, J. T. Seo, A. Bluiett, M. Turner, D. Temple, S. B. Trivedi, H. Zong, S. W. Kutcher, C. C. Wang, R. J. Chen, and B. Schumm, “Mid-infrared laser development based on transition metal doped cadmium manganese telluride,” J. Lumin. 87–89, 1143–1145 (2000). [CrossRef]
  29. J. T. Seo, U. Hommerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+-doped Cd0.85Mn0.15Te mid-infrared laser,” Opt. Commun. 153(4-6), 267–270 (1998). [CrossRef]
  30. M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II-VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B Condens. Matter 46(12), 7459–7468 (1992). [CrossRef] [PubMed]
  31. V. Fedorov, W. Mallory, S. Mirov, U. Hommerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1-xTe crystals for mid-IR room temperature lasers,” J. Cryst. Growth 310(20), 4438–4442 (2008). [CrossRef]
  32. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0-4.5-mum lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24(23), 1720–1722 (1999). [CrossRef] [PubMed]
  33. M. E. Doroshenko, H. Jelínková, T. T. Basiev, M. Jelínek, P. Koranda, M. Němec, V. K. Komar, A. S. Gerasimenko, V. V. Badikov, D. V. Badikov, D. Vyhlídal, and J. Stoklasa, Fe:ZnSe Laser Comparison of Active Materials Grown by Two Different Methods, Proceedings Vol. 7912, Solid State Lasers XX: Technology and Devices, W. A. Clarkson; N. Hodgson; and R. Shori, eds., 79122D, 2011.
  34. R. Pappalardo and R. D. Dietz, “Absorption spectra of transition ions in CdS crystals,” Phys. Rev. 123(4), 1188–1203 (1961). [CrossRef]
  35. A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.-H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001). [CrossRef]
  36. J.-O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr2+ in bulk ZnSe” J. Cryst. Growth 240(1-2), 176–184 (2002). [CrossRef]
  37. U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr2+:ZnSe and Fe2+:ZnSe,” Opt. Mater. 28(3), 231–240 (2006). [CrossRef]
  38. P. Moulton, E. Slobodchikov, “1‐GW‐peak‐power, Cr:ZnSe laser,” CLEO/QELS’11, Post-deadline Technical Digest, (Optical Society of America, 2011), post-deadline paper PDPA10.
  39. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” Technical Digest on CD-ROM, AMC2, Advanced Solid State Photonics 2010, San Diego, CA, USA, January 31- February 3, 2010.
  40. I. S. Moskalev, V. V. Fedorov, S. B. Mirov, P. A. Berry, and K. L. Schepler, 12-Watt CW Polycrystalline Cr2+:ZnSe Laser Pumped by Tm-fiber Laser, Technical Digest CD-ROM, WB30, Advanced Solid State Photonics 2009, Denver, CO, February 1–4, 2009.
  41. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser,” Opt. Express 17(4), 2048–2056 (2009). [CrossRef] [PubMed]
  42. S. Mirov, I. Moskalev, V. Fedorov, D. Martyshkin, M. Mirov, and N. Myoung, Mid-Infrared Lasers Based on Transition Metal Doped II-VI Semiconductors, Technical Digest on CD-ROM, OASIS III conference, Tel Aviv, Israel, March 9–10, 2011.
  43. N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 μm room temperature Fe:ZnSe laser,” Opt. Lett. 36(1), 94–96 (2011). [CrossRef] [PubMed]
  44. A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin, E. F. Voronkin, and A. I. Lalayants, “Hot-pressed ceramic Cr2+:ZnSe gain-switched laser,” Opt. Express 14(24), 11694–11701 (2006). [CrossRef] [PubMed]
  45. S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007). [CrossRef]
  46. M. Luo, B. L. VanMil, R. P. Tompkins, T. H. Myers, and N. C. Giles, “Photoluminescence of ZnTe and ZnTe:Cr grown by molecular-beam epitaxy,” J. Appl. Phys. 97(1), 013518 (2005). [CrossRef]
  47. A. Gallian, V. V. Fedorov, J. Kernal, J. Allman, S. B. Mirov, E. M. Dianov, A. O. Zabezhaylov, and I. P. Kazakov, “Spectroscopic studies of molecular-beam epitaxially grown Cr2+-doped ZnSe thin films,” Appl. Phys. Lett. 86(9), 091105 (2005). [CrossRef]
  48. S. Wang, S. B. Mirov, V. V. Fedorov, and R. P. Camata, Synthesis and Spectroscopic Properties of Cr doped ZnS Crystalline Thin Films” in Solid State Lasers XIII: Technology and Devices, Proceedings of the International Society of Optical Engineering (SPIE) (2004) Vol. 5332, 13–20 Editors: Richard Scheps, Hanna J. Hoffman.
  49. J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys., A Mater. Sci. Process. 91(2), 333–335 (2008). [CrossRef]
  50. L. Luke, V. V. Fedorov, I. Moskalev, A. Gallian, and S. B. Mirov, Middle-Infrared Electroluminescence of n-Type Cr-Doped ZnSe Crystals, in Solid State Lasers XV: Technology and Devices, H. J. Hoffman and R. K. Shori, eds., Proc. Of SPIE Vol. 6100 (SPIE, Bellingham, WE, 2006) 61000Y–1-8 (ISBN 0–8194–6142–3).
  51. N. A. Vlasenko, P. F. Oleksenko, Z. L. Denisova, M. A. Mukhlyo, and L. I. Veligura, “Thermofield Cr+→Cr2+ recharging resulting in anomalous intensification of Cr2+ emission in ZnS:Cr thin-film electroluminescent structures,” Semicond. Phys. Quantum Electron. Optoelectron. 10, 87–90 (2007).
  52. J. Jaeck, R. Haidar, E. Rosencher, M. Caes, M. Tauvy, S. Collin, N. Bardou, J. Luc Pelouard, F. Pardo, and P. Lemasson, “Room temperature electroluminescence in the mid-infrared (2-3 µm) from bulk chromium-doped ZnSe,” Opt. Lett. 31(23), 3501–3503 (2006). [CrossRef] [PubMed]
  53. J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express 18(25), 25999–26006 (2010). [CrossRef] [PubMed]
  54. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]
  55. M. A. Noginov, Solid-State Random Lasers (Springer, USA 2005).
  56. C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-infrared Cr2+:ZnSe random powder lasers,” Opt. Express 16(7), 4952–4959 (2008). [CrossRef] [PubMed]
  57. C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer film,” Opt. Commun. 282(10), 2049–2052 (2009). [CrossRef]
  58. D. V. Martyshkin, J. T. Goldstein, R. P. Camata, V. V. Fedorov, and S. B. Mirov, Crystal Field Engineering of Transition Metal Doped II-VI Ternary and Quaternary Semiconductors for Mid-IR Tunable Laser Applications, Technical Digest on CD-ROM, ICL’11, Ann Arbor, MI, June 27-July 1, 2011.
  59. D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 024005 (2010). [CrossRef]
  60. http://www.ipgphotonics.com/products_1micron_lasers_cw_ylr-hpseries.htm
  61. J. E. Williams, J. T. Goldstein, V. V. Fedorov, D. V. Martyshkin, R. P. Camata, and S. B. Mirov, Mid-IR Laser Oscillation in Cr:ZnSe Planar Waveguide Structures and in Cr:ZnSe/As2S3:As2Se3 Composite Materials, Technical Digest on CD-ROM, 2010 Frontiers in Optics (FiO)/Laser Science XXVI (LS) Conference, October 24-28, 2010, Rochester Riverside Convention Center, Rochester, NY.
  62. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010). [CrossRef] [PubMed]
  63. D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov, and S. B. Mirov, “Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials,” Opt. Lett. 36(9), 1530–1532 (2011). [CrossRef] [PubMed]
  64. R. A. Mironov, E. V. Karaksina, A. O. Zabezhailov, R. M. Shapashnikov, M. F. Churbanov, and E. M. Dianov, “Mid-IR luminescence of Cr2+:II-VI crystals in chalcogenide glass fibres,” Quantum Electron. 40(9), 828–829 (2010). [CrossRef]
  65. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89, 445–516, 530–565 (Springer-Verlag, Berlin Heidelberg,2003).
  66. O. Rössler and M. Schulz, New Series Vol. 41B: II–VI and I–VII Compounds; Semimagnetic Compounds (Springer Verlag, Berlin, 1999).
  67. K. Byrappa and T. Ohachi, Crystal Growth Technology (Springer, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited