OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 911–920

Cylindrical electromagnetic external cloak with only axial material parameter spatially variant

Tinghua Li, Ming Huang, Jingjing Yang, Yuping Yao, and Jiang Yu  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 5, pp. 911-920 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2092 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic external cloak is an important device, which can make an object outside its domain invisible, meanwhile the object can exchange information with the outer region. Based on optical transformation method, we design a simplified cylindrical electromagnetic external cloak with only axial material parameter spatially variant in this paper. The general expressions of material parameters are derived, and then the performance of the external cloak is simulated using the full wave simulations. The advantage of this external cloak is that transverse material parameters are constants, which makes it easier to realize with two-dimensional metamaterials. Besides, the effects of loss and perturbations of parameters on the performance of the cloak are also investigated. This work provides a feasible way for the fabrication of the metamaterial-assisted external cloak.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:

Original Manuscript: June 28, 2011
Revised Manuscript: July 24, 2011
Manuscript Accepted: August 9, 2011
Published: August 11, 2011

Tinghua Li, Ming Huang, Jingjing Yang, Yuping Yao, and Jiang Yu, "Cylindrical electromagnetic external cloak with only axial material parameter spatially variant," Opt. Mater. Express 1, 911-920 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  6. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009). [CrossRef] [PubMed]
  7. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef] [PubMed]
  8. P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008). [CrossRef]
  9. R. B. Hwang and C. Y. Chin, “Broadband cloaking using composite dielectrics,” AIP Advances 1(1), 012112 (2011). [CrossRef]
  10. P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009). [CrossRef]
  11. W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009). [CrossRef]
  12. D. H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010). [CrossRef]
  13. J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009). [CrossRef] [PubMed]
  14. M. Huang and J. J. Yang, Wave Propagation (Intech Press, 2011), Chap. 2.
  15. J. J. Yang, T. H. Li, M. Huang, and M. Cheng, “Transparent device with homogeneous material parameters,” Appl. Phys., A Mater. Sci. Process. , doi:. [CrossRef]
  16. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008). [CrossRef]
  17. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008). [CrossRef] [PubMed]
  18. W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010). [CrossRef]
  19. X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010). [CrossRef]
  20. T. Y. Chen and C. N. Weng, “Invisibility cloak with a twin cavity,” Opt. Express 17(10), 8614–8620 (2009). [CrossRef] [PubMed]
  21. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009). [CrossRef] [PubMed]
  22. C. F. Yang, J. Yang, M. Huang, Z. Xiao, and J. H. Peng, “An external cloak with arbitrary cross section based on complementary medium and coordinate transformation,” Opt. Express 19(2), 1147–1157 (2011). [CrossRef] [PubMed]
  23. W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited