OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 921–935

Laser-induced structural modification, its mechanisms, and applications in glassy optical materials

J. David Musgraves, Kathleen Richardson, and Himanshu Jain  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 921-935 (2011)
http://dx.doi.org/10.1364/OME.1.000921


View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A brief review of laser-induced material modification in glassy materials is presented. The mechanisms of energy transfer from the laser and the subsequent structural modifications are reviewed. Specific features of femtosecond (fs) and continuous wave (CW) laser irradiation of glass are presented and the impact of the process parameters on the properties is discussed. The diverse responses exhibited by various glass families are presented and contrasted, with a focus on the use of these materials and processes for a wide variety of novel applications. Finally, suggestions of future directions for laser-induced material modification are presented.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Materials Processing

History
Original Manuscript: July 18, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 9, 2011
Published: August 11, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Citation
J. David Musgraves, Kathleen Richardson, and Himanshu Jain, "Laser-induced structural modification, its mechanisms, and applications in glassy optical materials," Opt. Mater. Express 1, 921-935 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-921


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000). [CrossRef]
  2. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents [Invited],” Opt. Mater. Express 1(5), 866–882 (2011).
  3. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996). [CrossRef]
  4. E. Marquez, J. Ramirezmalo, P. Villares, R. Jimenezgaray, P. J. S. Ewen, and A. E. Owen, “Calculation of the thickness and optical-constants of amorphous arsenic sulfide films from their transmission spectra,” J. Phys. D Appl. Phys. 25(3), 535–541 (1992). [CrossRef]
  5. J. Choi, “Femtosecond laser written volumetric diffractive optical elements and their applications,” doctoral dissertation (University of Central Florida, 2009).
  6. R. A. Street, “Non-radiative recombination in chalcogenide glasses,” Solid State Commun. 24(5), 363–365 (1977). [CrossRef]
  7. G. Wannier, “The structure of electronic excitation levels in insulating crystals,” Phys. Rev. 52(3), 191–197 (1937). [CrossRef]
  8. S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81(1-2), 71–98 (1986). [CrossRef]
  9. M. Frumar, A. P. Firth, and A. E. Owen, “A model for photostructural changes in the amorphous As-S system,” J. Non-Cryst. Solids 59-60, 921–924 (1983). [CrossRef]
  10. L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. C. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007). [CrossRef]
  11. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003). [CrossRef]
  12. L. Skuja, in Defects in SiO2 and Related Dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom, eds. (Kluwer Academic Publishers, 2000), pp. 73–116.
  13. O. M. Efimov, K. Gabel, S. V. Garnov, L. B. Glebov, S. Grantham, M. Richardson, and M. J. Soileau, “Color-center generation in silicate glasses exposed to infrared femtosecond pulses,” J. Opt. Soc. Am. B 15(1), 193–199 (1998). [CrossRef]
  14. J. B. Lonzaga, S. M. Avanesyan, S. C. Langford, and J. T. Dickinson, “Color center formation in soda-lime glass with femtosecond laser pulses,” J. Appl. Phys. 94(7), 4332–4340 (2003). [CrossRef]
  15. L. Dong, J. L. Archambault, L. Reekie, P. S. J. Russell, and D. N. Payne, “Photoinduced absorption change in germanosilicate preforms: evidence for the color-center model of photosensitivity,” Appl. Opt. 34(18), 3436–3440 (1995). [CrossRef] [PubMed]
  16. C. Pfleiderer, N. Leclerc, and K. O. Greulich, “The UV-induced 210-nm absorption-band in fused-silica with different thermal history and stoichiometry,” J. Non-Cryst. Solids 159(1-2), 145–153 (1993). [CrossRef]
  17. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol. 21(1), 246–253 (2003). [CrossRef]
  18. V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. Digiovanni, and R. M. Atkins, “Ultraviolet-laser fabrication of ultrastrong optical-fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63(13), 1727–1729 (1993). [CrossRef]
  19. M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994). [CrossRef]
  20. A. Zoubir, “Towards direct writing of 3-D photonic circuits using ultrafast lasers,” doctoral dissertation (University of Central Florida, 2004).
  21. J. R. Ferraro and M. H. Manghnani, “Infrared-absorption spectra of sodium silicate-glasses at high-pressures,” J. Appl. Phys. 43(11), 4595–4599 (1972). [CrossRef]
  22. C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B Condens. Matter 38(2), 1255–1273 (1988). [CrossRef] [PubMed]
  23. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007). [CrossRef] [PubMed]
  24. T. Komatsu, R. Ihara, T. Honma, Y. Benino, R. Sato, H. G. Kim, and T. Fujiwara, “Patterning of non-linear optical crystals in glass by laser-induced crystallization,” J. Am. Ceram. Soc. 90(3), 699–705 (2007). [CrossRef]
  25. S. D. Stookey, “Photosensitive glass—a new photographic medium,” Ind. Eng. Chem. 41(4), 856–861 (1949). [CrossRef]
  26. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999). [CrossRef] [PubMed]
  27. http://www.optigrate.com/ , retrieved.
  28. V. P. Veiko and Y. B. Yakovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33(11), 3567–3571 (1994). [CrossRef]
  29. V. P. Veiko, A. K. Kromin, and E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glasslike materials,” Proc. SPIE 1992, 159–167 (1993). [CrossRef]
  30. V. P. Veiko, Q. K. Kieu, N. V. Nikonorov, and P. A. Skiba, “On the reversibility of laser-induced phase-structure modification of glass-ceramics,” J. Laser Micro/Nanoeng. 1(2), 149–154 (2006). [CrossRef]
  31. T. Chia, L. L. Hench, C. Qin, and C. K. Hsieh, “Thermal modeling of laser-densified microlenses,” Appl. Opt. 33(16), 3486–3492 (1994). [CrossRef] [PubMed]
  32. D. J. Taylor and B. D. Fabes, “Laser processing of sol-gel coatings,” J. Non-Cryst. Solids 147-148, 457–462 (1992). [CrossRef]
  33. V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, and P. A. Fomichev, “Laser heating and evaporation of glass and glass-borning materials and its application for creating MOC,” Proc. SPIE 1544, 152–163 (1991). [CrossRef]
  34. T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001). [CrossRef]
  35. P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008). [CrossRef]
  36. C. H. Tsai and B. C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32(11-12), 1155–1162 (2007). [CrossRef]
  37. K. Yahata, K. Yamamoto, and E. Ohmura, “Crack propagation analysis in laser scribing of glass,” J. Laser Micro/Nanoeng. 5(2), 109–114 (2010). [CrossRef]
  38. H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65(23), 2925–2927 (1994). [CrossRef]
  39. R. Prieto-Alcón, E. Marquez, J. M. Gonzalez-Leal, R. Jimenez-Garay, A. V. Kolobov, and M. Frumar, “Reversible and athermal photo-vitrification of As50Se50 thin films deposited onto silicon wafer and glass substrates,” Appl. Phys., A Mater. Sci. Process. 68(6), 653–661 (1999). [CrossRef]
  40. J. Feinleib, J. deNeufville, S. C. Moss, and S. R. Ovshinsk, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys., A Mater. Sci. Process. 18, 254–257 (1971).
  41. J. Pellegrino and J. M. Galligan, “Photoplasticity and fracture in HgCdTe,” J. Vac. Sci. Technol. 3(1), 160–162 (1985). [CrossRef]
  42. C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274(1-3), 23–29 (2000). [CrossRef]
  43. A. Kovalskiy, J. Cech, M. Vlcek, C. M. Waits, M. Dubey, W. R. Heffner, and H. Jain, “Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning,” J. Micro/Nanolith. MEMS MOEMS 8(4), 043012 (2009). [CrossRef]
  44. A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40(5), 625–684 (1991). [CrossRef]
  45. A. V. Kolobov, Photo-Induced Metastability in Amorphous Semiconductors (Wiley-VCH, 2003).
  46. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic, 2000).
  47. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995). [CrossRef]
  48. M. L. Trunov, “Photo-induced plasticity in amorphous chalcogenides: An overview of mechanisms and applications,” J. Optoelectron. Adv. Mater. 7, 2235–2246 (2005).
  49. G. J. Adriaenssens, E. V. Emellanova, and V. I. Arkhipov, “Modeling of photoinduced anisotropies in chalcogenide glasses,” in Properties and Applications of Amorphous Materials, M. F. Thorpe and L. Tichy, eds. (Kluwer Academic, 2001), pp. 311–319.
  50. J. Li and D. A. Drabold, “Direct calculation of light-induced structural change and diffusive motion in glassy As2Se3.,” Phys. Rev. Lett. 85(13), 2785–2788 (2000). [CrossRef] [PubMed]
  51. D. Zhao and H. Jain, Unpublished results (2011).
  52. H. Pribylova, K. Antoine, M. Vlcek, and H. Jain, “Kinetics of laser-induced photodarkening in arsenic based chalcogenide glasses,” Thin Solid Films 519(11), 3950–3953 (2011). [CrossRef]
  53. L. Russo, M. Vlcek, and H. Jain, “Arsenic sulphide glasses as novel photoresist materials,” Glass Technol. 46, 94–98 (2005).
  54. G. Yang, H. S. Jain, A. T. Ganjoo, D. H. Zhao, Y. S. Xu, H. D. Zeng, and G. R. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008). [CrossRef] [PubMed]
  55. H. Jain and M. Vlcek, “Glasses for lithography,” J. Non-Cryst. Solids 354(12-13), 1401–1406 (2008). [CrossRef]
  56. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  57. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1695–1709 (2004). [CrossRef]
  58. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]
  59. J. Kruger and W. Kautek, “The femtosecond pulse laser: a new tool for micromachining,” Laser Phys. 9, 30–40 (1999).
  60. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997). [CrossRef]
  61. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997). [CrossRef]
  62. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17(25), 23284–23289 (2009). [CrossRef] [PubMed]
  63. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010). [CrossRef]
  64. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001). [CrossRef] [PubMed]
  65. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19(10), 2496–2504 (2002). [CrossRef]
  66. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  67. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998). [CrossRef]
  68. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001). [CrossRef] [PubMed]
  69. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000). [CrossRef]
  70. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef] [PubMed]
  71. M. Bernier, S. Gagnon, and R. Vallée, “Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800nm [Invited],” Opt. Mater. Express 1(5), 832–844 (2011).
  72. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003). [CrossRef]
  73. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003). [CrossRef]
  74. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004). [CrossRef]
  75. M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljacic, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639–3641 (2004). [CrossRef]
  76. V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho, “Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model,” J. Lightwave Technol. 19(11), 1734–1739 (2001). [CrossRef]
  77. Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, G. Lakshminarayana, and J. Qiu, “Femtosecond laser direct writing of TiO2 crystalline patterns in glass,” Appl. Phys. B 93(2-3), 613–617 (2008). [CrossRef]
  78. B. Zhu, Y. Dai, H. L. Ma, S. M. Zhang, G. Lin, and J. R. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15(10), 6069–6074 (2007). [CrossRef] [PubMed]
  79. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  80. M. Ramme, C. Nergard, J. Choi, H. Ebendorff-Heidepriem, T. M. Monro, and M. Richardson, “Waveguide-writing in non-phosphate telluride glass” (in preparation).
  81. Y. Tokuda, M. Saito, M. Takahashi, K. Yamada, W. Watanabe, K. Itoh, and T. Yoko, “Waveguide formation in niobium tellurite glasses by pico- and femtosecond laser pulses,” J. Non-Cryst. Solids 326-327, 472–475 (2003). [CrossRef]
  82. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express 14(25), 12145–12150 (2006). [CrossRef] [PubMed]
  83. T. T. Fernandez, S. M. Eaton, G. Della Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18(19), 20289–20297 (2010). [CrossRef] [PubMed]
  84. Y. Shimotsuma, K. Hirao, J. R. Qiu, and K. Miura, “Nanofabrication in transparent materials with a femtosecond pulse laser,” J. Non-Cryst. Solids 352(6-7), 646–656 (2006). [CrossRef]
  85. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  86. S. K. Sundaram, C. B. Schaffer, and E. Mazur, “Microexplosions in tellurite glasses,” Appl. Phys., A Mater. Sci. Process. 76(3), 379–384 (2003). [CrossRef]
  87. L. Petit, N. Carlie, T. Anderson, M. Jiyeon Choi, Richardson, and K. C. Richardson, “Progress on the photoresponse of chalcogenide glasses and films to near-infrared femtosecond laser irradiation: a review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008). [CrossRef]
  88. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001). [CrossRef]
  89. K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. Mater. Electron. 16(10), 633–643 (2005). [CrossRef]
  90. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004). [CrossRef] [PubMed]
  91. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008). [CrossRef]
  92. J. Choi, M. Ramme, and M. Richardson, “Integration of diffractive optical elements with other photonic devices as a built-in coupler using femtosecond laser direct writing” (in preparation).
  93. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tunnermann, “Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011). [CrossRef]
  94. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  95. C. M. Jewart, Q. Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010). [CrossRef] [PubMed]
  96. R. Suo, J. Lousteau, H. X. Li, X. Jiang, K. M. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009). [CrossRef] [PubMed]
  97. M. Bernier, K. Asatryan, R. Vallee, T. Galstian, S. A. Vasil'ev, O. I. Medvedkov, V. G. Plotnichenko, P. I. Gnusin, and E. M. Dianov, “Second-order Bragg gratings in single-mode chalcogenide fibres,” Quantum Electron. 41(5), 465–468 (2011). [CrossRef]
  98. www.optoscribe.com , retrieved.
  99. www.translume.com , retrieved.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited