OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 962–969

Dynamic membrane projection lithography [Invited]

D. Bruce Burckel, Joel R. Wendt, Igal Brener, and Michael B. Sinclair  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 962-969 (2011)
http://dx.doi.org/10.1364/OME.1.000962


View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present dynamic membrane projection lithography as a method to create three dimensional metallic traces in hemispherical cavities. The technique entails directional evaporation through perforations in a membrane covering a hemispherical unit-cell cavity. The sample is positioned on a rotating stage and tilted with respect to the incident evaporated beam, such that the traces are deposited on the interior face of the cavity. A simple self-aligned version and a more general two-step fabrication version are presented. Furthermore, by incorporating a fixed shutter, both closed-loop and split-loop structures are demonstrated.

© 2011 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Metamaterials

History
Original Manuscript: June 24, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: August 16, 2011
Published: August 19, 2011

Virtual Issues
Nanoplasmonics and Metamaterials (2011) Optical Materials Express

Citation
D. Bruce Burckel, Joel R. Wendt, Igal Brener, and Michael B. Sinclair, "Dynamic membrane projection lithography [Invited]," Opt. Mater. Express 1, 962-969 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-962


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008). [CrossRef] [PubMed]
  5. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003). [CrossRef] [PubMed]
  6. C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science330(6011), 1633–1634 (2010). [CrossRef] [PubMed]
  7. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006). [CrossRef] [PubMed]
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  9. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009). [CrossRef] [PubMed]
  10. J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.)17(10), 1276–1281 (2005). [CrossRef]
  11. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009). [CrossRef] [PubMed]
  12. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5053–5057 (2010). [CrossRef] [PubMed]
  13. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3171–3175 (2010). [CrossRef] [PubMed]
  14. M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst.13(6), 956–962 (2004). [CrossRef]
  15. N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng.16(8), 1606–1613 (2006). [CrossRef]
  16. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett.10(7), 2511–2518 (2010). [CrossRef] [PubMed]
  17. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (88 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited